The Meyer-Neldel compensation law, observed in a wide variety of chemical reactions and other thermally activated processes, provides a proportionality between the entropic and the enthalpic components of an energy barrier. By analyzing 31 different polymer systems, we show that such an intriguing behavior is encountered also in the slow Arrhenius process, a recently discovered microscopic relaxation mode, responsible for several equilibration mechanisms both in the liquid and the glassy state. We interpret this behavior in terms of the multiexcitation entropy model, indicating that overcoming large energy barriers can require a high number of low-energy local excitations, providing a multiphonon relaxation process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0174213 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!