Acetyl tributyl citrate (ATBC) is a widely used phthalate substitute. Although ATBC is considered to be with a safe dosage of up to 1000 mg/kg/day, studies on its effects in some sensitive populations, such as diabetic patients, are relatively rare. Epidemiological studies have shown that there is a link between diabetes and nervous system diseases. However, toxicological studies have not fully confirmed this yet. In this study, glycolipid metabolism, cognitive deficits, brain tissue damage, levels of neurotransmitters, beta-amyloid plaques (Aβ), hyperphosphorylated tau protein (p-Tau), oxidative stress and inflammation, as well as glial cell homeostatic levels in the brain tissue of type 2 diabetes (T2DM) mice, were determined after ATBC exposure (0, 2, 20, and 200 mg/kg/day) for 90 days. The results confirmed that ATBC exposure aggravated the disorder of glycolipid metabolism and caused cognitive deficits in T2DM mice; induced histopathological alterations and Aβ and p-Tau accumulation, and reduced the levels of 5-hydroxytryptamine and acetylcholine in T2DM mouse brains; oxidative stress and glial cell homeostatic levels in T2DM mouse brains were also changed. Some of the adverse effects were gender-dependent. These findings support the theory that T2DM mice, especially males, are more sensitive to ATBC exposure. Although the safe dose of ATBC is high, prolonged exposure at seemingly safe concentrations has the potential to aggravate diabetes symptoms and cause brain tissue damage in T2DM mice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10610634PMC
http://dx.doi.org/10.3390/toxics11100877DOI Listing

Publication Analysis

Top Keywords

brain tissue
16
t2dm mice
16
atbc exposure
12
acetyl tributyl
8
tributyl citrate
8
exposure seemingly
8
seemingly safe
8
safe concentrations
8
adverse effects
8
type diabetes
8

Similar Publications

Complementary Strategies to Identify Differentially Expressed Genes in the Choroid Plexus of Patients with Progressive Multiple Sclerosis.

Neuroinformatics

January 2025

Laboratory for Applied Genomics and Bioinnovations, Instituto Oswaldo Cruz - Fiocruz, Rio de Janeiro, RJ, Brazil.

Multiple sclerosis (MS) is a neurological disease causing myelin and axon damage through inflammatory and autoimmune processes. Despite affecting millions worldwide, understanding its genetic pathways remains limited. The choroid plexus (ChP) has been studied in neurodegenerative processes and diseases like MS due to its dysregulation, yet its role in MS pathophysiology remains unclear.

View Article and Find Full Text PDF

Background: Electromagnetic radiation (EMR) from wireless technology and mobile phones, operates at various frequencies. The present study analyses the major impact of short-term exposure to 2.4 GHz frequency EMR, using the two model systems chick embryos and SH-SY5Y cell lines.

View Article and Find Full Text PDF

Voxel-based morphometry (VBM) of T1-weighted (T1-w) magnetic resonance imaging (MRI) is primarily used to study the association of brain structure with cognitive functions. However, in theory, T2-weighted (T2-w) MRI could also be used in VBM studies because of its sensitivity to pathology and tissue changes. We aimed to compare the T1-w and T2-w images to study brain structures in association with cognitive abilities.

View Article and Find Full Text PDF

Brain tumors can cause difficulties in normal brain function and are capable of developing in various regions of the brain. Malignant tumours can develop quickly, pass through neighboring tissues, and extend to further brain regions or the central nervous system. In contrast, healthy tumors typically develop slowly and do not invade surrounding tissues.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is an RNA virus responsible for coronavirus disease 2019 (COVID-19). While SARS-CoV-2 primarily targets the lungs and airways, it can also infect other organs, including the central nervous system (CNS). The aim of this study was to investigate whether the choroid plexus could serve as a potential entry site for SARS-CoV-2 into the brain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!