Transparent soil (TS) was specifically designed to support root growth in the presence of air, water, and nutrients and allowed the time-resolved phenotyping of roots in vivo. Nevertheless, it is imperative to further optimize the reagent cost of TS to enable its wider utilization. We substituted the costly Phytagel obtained from Sigma with two more economical alternatives, namely Biodee and Coolaber. TS beads from each brand were prepared using 12 different polymer concentrations and seven distinct crosslinker concentrations. A comprehensive assessment encompassing transparency, mechanical characteristics, particle size, porosity, and stability of TS was undertaken. Compared to the Sigma Phytagel brand, both Biodee and Coolaber significantly reduced the transparency and collapse stress of the TS they produced. Consequently, this led to a significant reduction in the allowable width and height of the growth box, although they could still simultaneously exceed 20 cm and 19 cm. There was no notable difference in porosity and stability among the TS samples prepared using the three Phytagel brands. Therefore, it is feasible to consider replacing the Phytagel brand to reduce TS production costs. This study quantified the differences in TS produced using three Phytagel brands at different prices that will better promote the application of TS to root phenotypes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10606193 | PMC |
http://dx.doi.org/10.3390/gels9100835 | DOI Listing |
ACS Omega
December 2024
Department of Biological and Physical Sciences, South Carolina State University, Orangeburg, South Carolina 29117, United States.
Food packaging industries generally use petroleum-based packaging materials that are non-biodegradable and harmful to the environment. Eco-friendly polymers such as chitosan (CH), gelatin (GE), and cellulose nanocrystals (CNCs) are leading viable alternatives to plastics traditionally used in packaging because of their higher functionality and biodegradability. In this study, an innovative approach has been disclosed to prepare new packaging materials by utilizing chitosan, gelatin, and cellulose nanocrystals (CNCs) through a simple solution casting method.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Pharmacy, Fujian Vocational College of Bioengineering, Fuzhou 350000, China. Electronic address:
Carrageenan has good film-forming characteristics, but it is difficult to simultaneously improve its multiple performances, such as water-resistance, light transmittance and thermal stability. In this study, multi-advantage composite films were prepared by iota-carrageenan and quaternary ammonium surfactants according to solvent induced method. The weight change, FTIR and thermogravimetric analyses of the films before and after solvent inducement indicated that the inorganic counterions of iota-carrageenan were replaced by quaternary ammonium ions.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electrical Engineering, Faculty of Engineering, Razi University, Kermanshah, Iran.
Climate change is one of the most crucial issues in human society such that if it is not given sufficient attention, it can become a great threat to both humans and the Earth. Due to global warming, soil erosion is increasing in different regions. Therefore, this issue will require further investigation and the use of new tools.
View Article and Find Full Text PDFSci Rep
December 2024
The National Institute of Horticultural Research, ul. Pomologiczna 18, 96-100, Skierniewice, Poland.
The aim of this research is to create an automated system for identifying soil microorganisms at the genera level based on raw microscopic images of monocultural colonies grown in laboratory environment. The examined genera are: Fusarium, Trichoderma, Verticillium, Purpureolicillium and Phytophthora. The proposed pipeline deals with unprocessed microscopic images, avoiding additional sample marking or coloration.
View Article and Find Full Text PDFHuan Jing Ke Xue
January 2025
Department of Life Sciences, Changzhi University, Changzhi 046011, China.
The potential threat of soil microplastics (MPs, particle sizes smaller than 5 mm) to the agricultural environment and food security production has become a hot issue, but there are few systematic studies on the characteristics and influencing factors of MP pollution in agricultural soil in China. Based on the data of soil MPs and related environmental factors (temperature, precipitation, soil pH, and organic carbon) and social and economic factors (permanent population, gross regional product per capita, gross industrial product per capita, and cultivated land area per capita) extracted from 6 694 samples from 85 published studies from 2020 to 2023, meta-analysis was performed. The characteristics of MPs pollution in agricultural soil and the key factors affecting the accumulation of MPs in soil in six administrative regions of China were analyzed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!