Digital Filtering Techniques Using Fuzzy-Rules Based Logic Control.

J Imaging

Division of Bioengineering, School of Biological Sciences, University of Reading, Reading RG6 6AY, UK.

Published: September 2023

This paper discusses current formulations based on fuzzy-logic control concepts as applied to the removal of impulsive noise from digital images. We also discuss the various principles related to fuzzy-ruled based logic control techniques, aiming at preserving edges and digital image details efficiently. Detailed descriptions of a number of formulations for recently developed fuzzy-rule logic controlled filters are provided, highlighting the merit of each filter. Fuzzy-rule based filtering algorithms may be designed assuming the tailoring of specific functional sub-modules: (a) logical controlled variable selection, (b) the consideration of different methods for the generation of fuzzy rules and membership functions, (c) the integration of the logical rules for detecting and filtering impulse noise from digital images. More specifically, we discuss impulse noise models and window-based filtering using fuzzy inference based on vector directional filters as associated with the filtering of RGB color images and then explain how fuzzy vector fields can be generated using standard operations on fuzzy sets taking into consideration fixed or random valued impulse noise and fuzzy vector partitioning. We also discuss how fuzzy cellular automata may be used for noise removal by adopting a Moore neighbourhood architecture. We also explain the potential merits of adopting a fuzzy rule based deep learning ensemble classifier which is composed of a convolutional neural network (CNN), a recurrent neural networks (RNN), a long short term memory neural network (LSTM) and a gated recurrent unit (GRU) approaches, all within a fuzzy min-max (FMM) ensemble. Fuzzy non-local mean filter approaches are also considered. A comparison of various performance metrics for conventional and fuzzy logic based filters as well as deep learning filters is provided. The algorhitms discussed have the following advantageous properties: high quality of edge preservation, high quality of spatial noise suppression capability especially for complex images, sound properties of noise removal (in cases when both mixed additive and impulse noise are present), and very fast computational implementation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10606991PMC
http://dx.doi.org/10.3390/jimaging9100208DOI Listing

Publication Analysis

Top Keywords

impulse noise
16
fuzzy
10
based logic
8
logic control
8
noise
8
noise digital
8
digital images
8
images discuss
8
filters provided
8
fuzzy vector
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!