Despite significant advancements in dental tissue restoration and the use of prostheses for addressing tooth loss, the prevailing clinical approaches remain somewhat inadequate for replicating native dental tissue characteristics. The emergence of three-dimensional (3D) bioprinting offers a promising innovation within the fields of regenerative medicine and tissue engineering. This technology offers notable precision and efficiency, thereby introducing a fresh avenue for tissue regeneration. Unlike the traditional framework encompassing scaffolds, cells, and signaling factors, 3D bioprinting constitutes a contemporary addition to the arsenal of tissue engineering tools. The ongoing shift from conventional dentistry to a more personalized paradigm, principally under the guidance of bioprinting, is poised to exert a significant influence in the foreseeable future. This systematic review undertakes the task of aggregating and analyzing insights related to the application of bioprinting in the context of regenerative dentistry. Adhering to PRISMA guidelines, an exhaustive literature survey spanning the years 2019 to 2023 was performed across prominent databases including PubMed, Scopus, Google Scholar, and ScienceDirect. The landscape of regenerative dentistry has ushered in novel prospects for dentoalveolar treatments and personalized interventions. This review expounds on contemporary accomplishments and avenues for the regeneration of pulp-dentin, bone, periodontal tissues, and gingival tissues. The progressive strides achieved in the realm of bioprinting hold the potential to not only enhance the quality of life but also to catalyze transformative shifts within the domains of medical and dental practices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10607235 | PMC |
http://dx.doi.org/10.3390/jfb14100530 | DOI Listing |
Int J Biol Macromol
January 2025
Department of cariology and Endodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing 100081, PR China.
Periodontitis is a chronic inflammatory condition mainly caused by the interaction between the host immune system and periodontal tissue pathogens, and may lead to consequences, such as alveolar bone defects and tooth loss. Incomplete bacterial removal, persistent inflammation and high reactive oxygen species (ROS) environment are the main challenges for periodontal tissue repair and alveolar bone regeneration. In this study, an injectable composite microgel (Gelatin methacryloyl-Phenylboronic acid/Hydroxyadamantane, GPH) loaded with antimicrobial peptide (AMP) and cerium dioxide (CeO) microspheres was developed to achieve a synergistic function of bacteriostasis, immunomodulation, and ROS removal.
View Article and Find Full Text PDFPLoS One
January 2025
Faculty of Veterinary Science, Veterinary Clinical Stem Cell and Bioengineering Research Unit, Chulalongkorn University, Bangkok, Thailand.
Potential trend of regenerative treatment for type I diabetes has been introduced for more than a decade. However, the technologies regarding insulin-producing cell (IPC) production and transplantation are still being developed. Here, we propose the potential IPC production protocol employing mouse gingival fibroblast-derived induced pluripotent stem cells (mGF-iPSCs) as a resource and the pre-clinical approved subcutaneous IPC transplantation platform for further clinical confirmation study.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Dental Materials Science, Academic Center for Dentistry (ACTA), University of Amsterdam, Amsterdam, The Netherlands.
Purpose: This study aimed to determine the cytotoxicity (irritant potency) of toothpaste ingredients, of which some had known to have sensitizing properties.
Materials: From the wide variety of toothpaste ingredients, Xylitol, Propylene glycol (PEG), Sodium metaphosphate (SMP), Lemon, Peppermint, Fluoride, Cinnamon, and Triclosan and Sodium dodecyl sulphate (SDS) have been selected for evaluation of their cytotoxic properties.
Methods: Reconstructed human gingiva (RHG) were topically exposed to toothpaste ingredients at different concentrations.
JCI Insight
January 2025
Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
Renal osteodystrophy is commonly seen in patients with chronic kidney disease (CKD) due to disrupted mineral homeostasis. Given the impaired renal function in these patients, common anti-resorptive agents, including bisphosphonates, must be used with caution or even contraindicated. Therefore, an alternative therapy without renal burden to combat renal osteodystrophy is urgently needed.
View Article and Find Full Text PDFNeurochem Res
January 2025
Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
Subarachnoid hemorrhage (SAH) is a type of hemorrhagic stroke with high morbidity, mortality and disability, and early brain injury (EBI) after SAH is crucial for prognosis. Recently, stem cell therapy has garnered significant attention in the treatment of neurological diseases. Compared to other stem cells, dental pulp stem cells (DPSCs) possess several advantages, including abundant sources, absence of ethical concerns, non-invasive procurement, non-tumorigenic history and neuroprotective potential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!