One of the most promising advancements in healthcare is the application of digital twin technology, offering valuable applications in monitoring, diagnosis, and development of treatment strategies tailored to individual patients. Furthermore, digital twins could also be helpful in finding novel treatment targets and predicting the effects of drugs and other chemical substances in development. In this review article, we consider digital twins as virtual counterparts of real human patients. The primary aim of this narrative review is to give an in-depth look into the various data sources and methodologies that contribute to the construction of digital twins across several healthcare domains. Each data source, including blood glucose levels, heart MRI and CT scans, cardiac electrophysiology, written reports, and multi-omics data, comes with different challenges regarding standardization, integration, and interpretation. We showcase how various datasets and methods are used to overcome these obstacles and generate a digital twin. While digital twin technology has seen significant progress, there are still hurdles in the way to achieving a fully comprehensive patient digital twin. Developments in non-invasive and high-throughput data collection, as well as advancements in modeling and computational power will be crucial to improve digital twin systems. We discuss a few critical developments in light of the current state of digital twin technology. Despite challenges, digital twin research holds great promise for personalized patient care and has the potential to shape the future of healthcare innovation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10608065 | PMC |
http://dx.doi.org/10.3390/jpm13101522 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!