A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multi-Label Classification of Chest X-ray Abnormalities Using Transfer Learning Techniques. | LitMetric

In recent years, deep neural networks have enabled countless innovations in the field of image classification. Encouraged by success in this field, researchers worldwide have demonstrated how to use Convolutional Neural Network techniques in medical imaging problems. In this article, the results were obtained through the use of the EfficientNet in the task of classifying 14 different diseases based on chest X-ray images coming from the NIH (National Institutes of Health) ChestX-ray14 dataset. The approach addresses dataset imbalances by introducing a custom split to ensure fair representation. Binary cross entropy loss is utilized to handle the multi-label difficulty. The model architecture comprises an EfficientNet backbone for feature extraction, succeeded by sequential layers including GlobalAveragePooling, Dense, and BatchNormalization. The main contribution of this paper is a proposed solution that outperforms previous state-of-the-art deep learning models average area under the receiver operating characteristic curve-AUC-ROC (score: 84.28%). The usage of the transfer-learning technique and traditional deep learning engineering techniques was shown to enable us to obtain such results on consumer-class GPUs (graphics processing units).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10607847PMC
http://dx.doi.org/10.3390/jpm13101426DOI Listing

Publication Analysis

Top Keywords

chest x-ray
8
deep learning
8
multi-label classification
4
classification chest
4
x-ray abnormalities
4
abnormalities transfer
4
transfer learning
4
learning techniques
4
techniques years
4
years deep
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!