Since antiquity, humans have known about plants as a medicinal cure. Recently, plant extracts are attracting more attention as a result of their natural origin and wide range of desirable features. Nanotechnology's progress and innovations enable the production of novel materials with enhanced properties for a broad range of applications. Electrospinning is a cutting-edge, flexible and economical technique that allows the creation of continuous nano- and microfibrous membranes with tunable structure, characteristics and functionalities. Electrospun fibrous materials are used in drug delivery, tissue engineering, wound healing, cosmetics, food packaging, agriculture and other fields due to their useful properties such as a large surface area to volume ratio and high porosity with small pore size. By encapsulating plant extracts in a suitable polymer matrix, electrospinning can increase the medicinal potential of these extracts, thus improving their bioavailability and maintaining the required concentration of bioactive compounds at the target site. Moreover, the created hybrid fibrous materials could possess antimicrobial, antifungal, antitumor, anti-inflammatory and antioxidant properties that make the obtained structures attractive for biomedical and pharmaceutical applications. This review summarizes the known approaches that have been applied to fabricate fibrous materials loaded with diverse plant extracts by electrospinning. Some potential applications of the extract-containing micro- and nanofibers such as wound dressings, drug delivery systems, scaffolds for tissue engineering and active food packaging systems are discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10608671 | PMC |
http://dx.doi.org/10.3390/membranes13100840 | DOI Listing |
MethodsX
June 2025
Observatory of Drug-Herb Interactions, Faculty of Pharmacy, University of Coimbra, Health Science Campus, Azinhaga Santa Comba, Coimbra, Portugal.
In this study, a straightforward spectrophotometric method was developed for quantifying the total content of chalcones in a sample. The method exhibits linearity, accuracy, precision, repeatability, and enables the estimation of total chalcone content in trans-chalcone equivalents for a sample diluted in carbon tetrachloride and added to antimony pentachloride. The analytical wavelength was determined to be 390 nm.
View Article and Find Full Text PDFScientificWorldJournal
January 2025
Department of Biology, College of Science, Bahir Dar University, P. O. Box 79, Bahir Dar, Ethiopia.
The present study was aimed to verify the medicinal value of and traditionally used to treat human and animal ailments in Ethiopia. Fresh leaves of these species were collected, dried under shade, and ground into fine powder. The extraction was carried out by the maceration method using methanol as a solvent.
View Article and Find Full Text PDFDrug Des Devel Ther
January 2025
The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China.
Background: Huanglian-ejiao decoction (HED) is a Chinese traditional medicinal formula evolved from the Shanghan Lun (Treatise on Febrile Diseases). However, HED ultimate mechanism of action remained indistinct. Therefore, this study aimed to investigate whether HED could exert anti-inflammatory effects on 2,4,6-Trinitrobenzenesulfonic acid (TNBS)-induced colitis (UC) model through the regulation of CD4T subsets and gut microbiota.
View Article and Find Full Text PDFInt J Cosmet Sci
January 2025
School of Chemical and Material Engineering, Jiangnan University, Wuxi, China.
Background: Oily skin not only threatens people with aesthetic and hygienic discomfort but also confronts them with annoying skin problems. To explore new skin care ingredients from herbal or plant extracts and understand their underlying mechanism for sebum control would assist in the discovery of desirable sebosuppressive agents, though it is still a deserving and challenging task.
Aim: To explore the effect of Camellia saponin (CS) on modulating the lipogenesis of human sebocytes.
Malar J
January 2025
Caribbean Centre for Research in Biosciences, Natural Products Institute, University of the West Indies, Kingston, Jamaica.
Background: Synergists reduce insecticide metabolism in mosquitoes by competing with insecticides for the active sites of metabolic enzymes, such as cytochrome P450s (CYPs). This increases the availability of the insecticide at its specific target site. The combination of both insecticides and synergists increases the toxicity of the mixture.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!