Electric potentials referred to as the gravielectric effect (∆ΨS) are generated in a double-membrane system containing identical polymer membranes set in horizontal planes and separating non-homogenous electrolyte solutions. The gravielectric effect depends on the concentration and composition of the solutions and is formed due to the gravitational field breaking the symmetry of membrane complexes/concentration boundary layers formed under concentration polarization conditions. As a part of the Kedem-Katchalsky formalism, a model of ion transport was developed, containing the transport parameters of membranes and solutions and taking into account hydrodynamic (convective) instabilities. The transition from non-convective to convective or vice versa can be controlled by a dimensionless concentration polarization factor or concentration Rayleigh number. Using the original measuring set, the time dependence of the membrane potentials was investigated. For steady states, the ∆ΨS was calculated and then the concentration characteristics of this effect were determined for aqueous solutions of NaCl and ethanol. The results obtained from the calculations based on the mathematical model of the gravitational effect are consistent with the experimental results within a 7% error range. It has been shown that a positive or negative gravielectric effect appeared when a density of the solution in the inter-membrane compartment was higher or lower than the density in the outer compartments. The values of the ∆ΨS were in a range from 0 to 27 mV. It was found that, the lower the concentration of solutions in the outer compartments of the two-membrane system (C0), for the same values of Cm/C0, the higher the ∆ΨS, which indicates control properties of the double-membrane system. The considered two-membrane electrochemical system is a source of electromotive force and functions as an electrochemical gravireceptor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10608946PMC
http://dx.doi.org/10.3390/membranes13100833DOI Listing

Publication Analysis

Top Keywords

double-membrane system
12
concentration polarization
12
gravitational field
8
electric potentials
8
polarization conditions
8
outer compartments
8
concentration
7
system
5
solutions
5
role gravitational
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!