Fractional calculus is an essential tool in studying new phenomena in hydromechanics and heat and mass transfer, particularly anomalous hydromechanical advection-dispersion considering the fractal nature of the porous medium. They are valuable in solving the urgent problem of convective mass transfer in a porous medium (e.g., membranes, filters, nozzles, convective coolers, vibrational prillers, and so on). Its solution allows for improving chemical engineering and technology workflows, refining process models for obtaining porous granular materials, realizing the convective cooling of granular and grain materials, and ensuring the corresponding apparatuses' environmental safety. The article aims to develop a reliable convective mass transfer model for a porous medium and proposes a practical approach for its parameter identification. As a result, a general scientific and methodological approach to parameter identification of the fractional convective mass transfer model in a porous medium was proposed based on available experimental data. It mainly used Riemann-Liouville fractional time and coordinate derivatives. The comprehensive application of the Laplace obtained the corresponding general solution transform with respect to time and a coordinate, the Mittag-Leffler function, and specialized functions. Different partial solutions in various application case studies proved this solution. Moreover, the algorithm for practically implementing the developed approach was proposed to evaluate parameters for the considered model by evaluation data. It was reduced to the two-parameter model and justified by the available experimental data.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10608948 | PMC |
http://dx.doi.org/10.3390/membranes13100819 | DOI Listing |
Vaccines (Basel)
December 2024
Analytical Research & Development, Merck & Co., Inc., Rahway, NJ 07065, USA.
Background/objectives: Host cell protein (HCP) content is a major attribute for biological and vaccine products that must be extensively characterized prior to product licensure. Enzyme Linked Immunosorbent Assay (ELISA) and Mass Spectrometry (MS) are conventional methods for quantitative host cell protein analysis in biologic and vaccine products. Both techniques are usually very tedious, labor-intensive, and challenging to transfer to other laboratories.
View Article and Find Full Text PDFVaccines (Basel)
November 2024
Women's and Children's Health Network, North Adelaide, SA 5006, Australia.
Background/objectives: Influenza vaccination is recommended for pregnant women, offering the dual benefit of protecting pregnant women and their newborn infants against influenza. This study aimed to investigate the impact of body mass index (BMI) on influenza vaccine responses in pregnant women and their newborns.
Methods: Participants included pregnant women attending the Women's and Children's Hospital in South Australia between 2018 and 2021.
Polymers (Basel)
December 2024
Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Bento Gonçalves 9500, Porto Alegre 90010-150, RS, Brazil.
This study reported a one-spot preparation of magnetic composite carbon (MCC@Fe) from microcrystalline cellulose (MC). The pure cellulose was impregnated in iron (III) chloride solution and carbonized at 650 °C. The MCC@Fe composite adsorbent underwent various characterization techniques.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Mechanical Engineering, Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil.
Recently, the liquid composite molding technique (LCM) has been used for producing fiber-reinforced polymer composites, since it allows the molding of complex parts, presenting good surface finishing and control of the mechanical properties of the product at the end of the process. Studies in this area have been focused on resin transfer molding (RTM), specifically on the resin rectilinear infiltration through the porous preform inserted in the closed cavity neglecting the sorption effect of the polymeric fluid by the reinforcement. Thus, the objective of this work is to predict resin radial flow in porous media (fibrous preform), including the effect of resin sorption by fibers considering a one-dimensional approach.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Research Laboratory "New Polymeric Materials", Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Nizhegorodskaya Oblast, Russia.
Anionic thermo- and pH-responsive copolymers were synthesized by photoiniferter reversible addition-fragmentation chain transfer polymerization (PI-RAFT). The thermo-responsive properties were provided by oligo(ethylene glycol)-based macromonomer units containing hydrophilic and hydrophobic moieties. The pH-responsive properties were enabled by the addition of 5-20 mol% of strong (2-acrylamido-2-methylpropanesulfonic) and weak (methacrylic) acids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!