In an aging society, maintaining healthy aging, preventing death, and enabling a continuation of economic activities are crucial. This study sought to develop a model for predicting survival times among community-dwelling older individuals using a deep learning method, and to identify the level of influence of various risk factors on the survival period, so that older individuals can manage their own health. This study used the Korean National Health Insurance Service claims data. We observed community-dwelling older people, aged 66 years, for 11 years and developed a survival time prediction model. Of the 189,697 individuals enrolled at baseline, 180,235 (95.0%) survived from 2009 to 2019, while 9462 (5.0%) died. Using deep-learning-based models (C statistics = 0.7011), we identified various factors impacting survival: Charlson's comorbidity index; the frailty index; long-term care benefit grade; disability grade; income level; a combination of diabetes mellitus, hypertension, and dyslipidemia; sex; smoking status; and alcohol consumption habits. In particular, Charlson's comorbidity index (SHAP value: 0.0445) and frailty index (SHAP value: 0.0443) were strong predictors of survival time. Prediction models may help researchers to identify potentially modifiable risk factors that may affect survival.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10606576 | PMC |
http://dx.doi.org/10.3390/geriatrics8050105 | DOI Listing |
Int J Med Inform
January 2025
School of Geography and the Environment, University of Oxford, South Parks Road, Oxford OX1 3QY, United Kingdom. Electronic address:
Background: Coronavirus Disease 2019 (COVID-19), caused by the SARS-CoV-2 virus, emerged as a global health crisis in 2019, resulting in widespread morbidity and mortality. A persistent challenge during the pandemic has been the accuracy of reported epidemic data, particularly in underdeveloped regions with limited access to COVID-19 test kits and healthcare infrastructure. In the post-COVID era, this issue remains crucial.
View Article and Find Full Text PDFInt J Med Inform
January 2025
Rheumatology and Allergy Clinical Epidemiology Research Center and Division of Rheumatology, Allergy, and Immunology, and Mongan Institute, Department of Medicine, Massachusetts General Hospital Boston MA USA. Electronic address:
Background: ANCA-associated vasculitis (AAV) is a rare but serious disease. Traditional case-identification methods using claims data can be time-intensive and may miss important subgroups. We hypothesized that a deep learning model analyzing electronic health records (EHR) can more accurately identify AAV cases.
View Article and Find Full Text PDFJ Anim Sci
January 2025
University of Minnesota, Department of Food Science and Nutrition, St. Paul, MN 55108 USA.
Feeding pigs lipids containing high levels of lipid oxidation products (LOP) has been shown to reduce growth performance, but data is lacking on quantitative relationships between LOP and pig growth, feed intake and feed efficiency. Four experiments (EXP) were conducted using soybean oil (SO) in EXP 1, 2, and 3, as well as SO, choice white grease (CWG) and palm oil (PO) in EXP 4, to evaluate the impact of feeding diets containing different amounts of LOP on pig performance. Lipid peroxidation was carried out using variable heating temperatures and durations to generate lipids with a broad range of peroxide (PV, mEq) and anisidine value (AnV, unitless).
View Article and Find Full Text PDFLipids Health Dis
January 2025
Department of Urology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road Jinan, Shandong, 250012, People's Republic of China.
Background: An association exists between obesity and reduced testosterone levels in males. The propose of this research is to reveal the correlation between 15 indices linked to obesity and lipid levels with the concentration of serum testosterone, and incidence of testosterone deficiency (TD) among adult American men.
Methods: The study utilized information gathered from the National Health and Nutrition Examination Survey (NHANES) carried out from 2011 to 2016.
J Cardiothorac Surg
January 2025
Department of Cardiology, Fujian Medical University Union Hospital, Fujian Heart Medical Center, Fujian Institute of Coronary Heart Disease, Fujian Clinical Medical Research Center for Heart and Macrovascular Disease, Fuzhou, 350001, China.
Objective: The objective of this study is to assess the predictive utility of perioperative P-wave parameters in patients with paroxysmal atrial fibrillation (PAF) undergoing catheter ablation, and to develop a predictive model using these parameters.
Methods: A total of 213 patients with PAF undergoing catheter ablation were retrospectively analyzed. P-wave parameters were measured within 3 days preoperatively and on the day postoperatively to determine their predictive significance for postoperative PAF recurrence.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!