Myc and Max are essential proteins in the development of prostate cancer. They act by dimerizing and binding to E-box sequences. Disrupting the Myc:Max heterodimer interaction or its binding to E-box sequences to interrupt gene transcription represent promising strategies for treating cancer. We designed novel pMyc and pMax peptides from reference sequences, and we evaluated their ability to bind specifically to E-box sequences using an electrophoretic mobility shift assay (EMSA). Then, we assembled nanosystems (NSs) by coupling pMyc and pMax peptides to AuNPs, and determined peptide conjugation using UV-Vis spectroscopy. After that, we characterized the NS to obtain the nanoparticle's size, hydrodynamic diameter, and zeta potential. Finally, we evaluated hemocompatibility and cytotoxic effects in three different prostate adenocarcinoma cell lines (LNCaP, PC-3, and DU145) and a non-cancerous cell line (Vero CCL-81). EMSA results suggests peptide-nucleic acid interactions between the pMyc:pMax dimer and the E-box. The hemolysis test showed little hemolytic activity for the NS at the concentrations (5, 0.5, and 0.05 ng/µL) we evaluated. Cell viability assays showed NS cytotoxicity. Overall, results suggest that the NS with pMyc and pMax peptides might be suitable for further research regarding Myc-driven prostate adenocarcinomas.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10609645PMC
http://dx.doi.org/10.3390/nano13202802DOI Listing

Publication Analysis

Top Keywords

e-box sequences
12
pmyc pmax
12
pmax peptides
12
prostate cancer
8
cell lines
8
binding e-box
8
design characterization
4
characterization pmyc/pmax
4
pmyc/pmax peptide-coupled
4
peptide-coupled gold
4

Similar Publications

Basic helix-loop-helix (bHLH) proteins comprise a large family of transcription factors that are involved in plant growth and development, as well as responses to various types of environmental stress. (birch) is a pioneer tree species in secondary forest that plays a key role in maintaining ecosystem stability and forest regeneration, but few bHLHs involved in abiotic stress responses have been unveiled in birch. In this study, nine BpbHLH TFs related to stress responses in the birch genome were identified.

View Article and Find Full Text PDF

MYOD is an E-box sequence-specific basic Helix-Loop-Helix (bHLH) transcriptional activator that, when expressed in non-muscle cells, induces nuclear reprogramming toward skeletal myogenesis by promoting chromatin accessibility at previously silent loci. Here, we report on the identification of a previously unrecognized property of MYOD as repressor of gene expression, via E-box-independent chromatin binding within accessible genomic elements, which invariably leads to reduced chromatin accessibility. MYOD-mediated repression requires the integrity of functional domains previously implicated in MYOD-mediated activation of gene expression.

View Article and Find Full Text PDF
Article Synopsis
  • - Loss-of-function studies reveal that T cell factor-1 (TCF1) is crucial for T cell development in the thymus, and its expression is regulated by E box DNA binding proteins independently of Notch signaling.
  • - Systematic analysis of five E protein binding elements (EPE1-5) shows that EPE3 is vital for αβ T cell development, while EPE1, 3, and 5 are important for γδ T cell maturation and fate decisions.
  • - The balanced expression of TCF1, influenced by specific EPEs, is essential for generating the appropriate number of T cells in the thymus.
View Article and Find Full Text PDF

Proteomic insights into circadian transcription regulation: novel E-box interactors revealed by proximity labeling.

Genes Dev

November 2024

Laboratory of Chronobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany;

Circadian clocks (∼24 h) are responsible for daily physiological, metabolic, and behavioral changes. Central to these oscillations is the regulation of gene transcription. Previous research has identified clock protein complexes that interact with the transcriptional machinery to orchestrate circadian transcription, but technological constraints have limited the identification of de novo proteins.

View Article and Find Full Text PDF

PDX1 is a crucial transcription factor in pancreas development and mature β-cell function. However, the regulation of PDX1 expression in larger animals mirroring human pancreas morphogenesis and endocrine maturation remains poorly understood. Therefore, we conducted a comparative analysis to characterize regulatory regions of goat PDX1 gene and assessed their transcriptional activity by transient transfection of several transgenic EGFP constructs in β- and non-β cell lines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!