FeC nanoparticles hold promise as catalysts and nanozymes, but their low activity and complex preparation have hindered their use. Herein, this study presents a synthetic alternative toward efficient, durable, and recyclable, FeC-nanoparticle-encapsulated nitrogen-doped hierarchically porous carbon membranes (FeC/N-C). By employing a simple one-step synthetic method, we utilized wood as a renewable and environmentally friendly carbon precursor, coupled with poly(ionic liquids) as a nitrogen and iron source. This innovative strategy offers sustainable, high-performance catalysts with improved stability and reusability. The FeC/N-C exhibits an outstanding peroxidase-like catalytic activity toward the oxidation of 3,3',5,5'-tetramethylbenzidine in the presence of hydrogen peroxide, which stems from well-dispersed, small FeC nanoparticles jointly with the structurally unique micro-/macroporous N-C membrane. Owing to the remarkable catalytic activity for mimicking peroxidase, an efficient and sensitive colorimetric method for detecting ascorbic acid over a broad concentration range with a low limit of detection (~2.64 µM), as well as superior selectivity, and anti-interference capability has been developed. This study offers a widely adaptable and sustainable way to synthesize an FeC/N-C membrane as an easy-to-handle, convenient, and recoverable biomimetic enzyme with excellent catalytic performance, providing a convenient and sensitive colorimetric technique for potential applications in medicine, biosensing, and environmental fields.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10609461 | PMC |
http://dx.doi.org/10.3390/nano13202786 | DOI Listing |
Talanta
December 2024
NanoBiosensors and Biodevices Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal, 721302, India. Electronic address:
This work presents a robust strategy for quantifying overlapping electrochemical signatures originating from complex mixtures and real human plasma samples using nickel-based electrochemical sensors and machine learning (ML). This strategy enables the detection of a panel of analytes without being limited by the selectivity of the transducer material and leaving accommodation of interference analysis to ML models. Here, we fabricated a non-enzymatic electrochemical sensor for L-lactic acid detection in complex mixtures and human plasma samples using nickel oxide (NiO) nanoparticle-modified glassy carbon electrodes (GCE).
View Article and Find Full Text PDFJ Food Drug Anal
December 2024
Zhenjiang College, Zhenjiang, 212000, PR China.
Ascorbic acid (AA) is used as a food additive for its antibacterial and antioxidant properties. However, excessive intake of AA is harmful to humans. Therefore, the detection of Fe and AA is generally recognized to be meaningful.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Department of Crop Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
Purpose: This study explored how exogenous silicon (Si) affects growth and salt resistance in maize.
Methods: The maize was cultivated in sand-filled pots, incorporating varied silicon and salt stress (NaCl) treatments. Silicon was applied at 0, 2, 4, 6, and 8 mM, and salt stress was induced using 0, 60 and120 mM concentrations.
Anal Chem
January 2025
State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China.
Human cells generate a bulk of aldehydes during lipid peroxidation (LPO), influencing critical cellular processes, such as oxidative stress, protein modification, and DNA damage. Enals, highly reactive α,β-unsaturated aldehydic metabolites, are implicated in various human pathologies, especially neurodegenerative disorders, cancer, and cardiovascular diseases. Despite their importance, endogenous enals remain poorly characterized, primarily due to their instability and low abundance.
View Article and Find Full Text PDFLuminescence
January 2025
Pharmaceutical Chemistry Department, Faculty of Pharmacy, Misr International University, Cairo, Egypt.
Affordable and eco-friendly green spectrofluorometric (FL) methods can enhance the safety and cost-effectiveness of quality assurance and control in ascorbic acid (ASA) formulations. However, most current techniques for ASA analysis have faced challenges like complexity, delayed response times, low throughput, time-consuming procedures, and requirements for expensive equipment and hazardous chemicals for analyte modification. The study is aimed at producing natural carbon quantum dots (NACQDs) from pumpkin seed peels (PSPs), a natural waste material, using a rapid microwave-assisted method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!