Recent Advances in the Catalytic Conversion of Methane to Methanol: From the Challenges of Traditional Catalysts to the Use of Nanomaterials and Metal-Organic Frameworks.

Nanomaterials (Basel)

Composting Research Group (GICOM), Department of Chemical, Biological, and Environmental Engineering, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.

Published: October 2023

AI Article Synopsis

  • - Methane and carbon dioxide are key players in global warming, with methane being 25 times more effective in trapping heat than carbon dioxide.
  • - Methanol, a liquid derived from methane, is easier to store and transport and can be a base for creating valuable products, prompting extensive research on its production.
  • - Recent studies highlight advancements in catalysts made from materials like zeolite, metal-organic frameworks (MOFs), and graphene, which enhance the conversion of methane to methanol at lower temperatures and pressures.

Article Abstract

Methane and carbon dioxide are the main contributors to global warming, with the methane effect being 25 times more powerful than carbon dioxide. Although the sources of methane are diverse, it is a very volatile and explosive gas. One way to store the energy content of methane is through its conversion to methanol. Methanol is a liquid under ambient conditions, easy to transport, and, apart from its use as an energy source, it is a chemical platform that can serve as a starting material for the production of various higher-value products. Accordingly, the transformation of methane to methanol has been extensively studied in the literature, using traditional catalysts as different types of zeolites. However, in the last few years, a new generation of catalysts has emerged to carry out this transformation with higher conversion and selectivity, and more importantly, under mild temperature and pressure conditions. These new catalysts typically involve the use of a highly porous supporting material such as zeolite, or more recently, metal-organic frameworks (MOFs) and graphene, and metallic nanoparticles or a combination of different types of nanoparticles that are the core of the catalytic process. In this review, recent advances in the porous supports for nanoparticles used for methane oxidation to methanol under mild conditions are discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10609106PMC
http://dx.doi.org/10.3390/nano13202754DOI Listing

Publication Analysis

Top Keywords

methane methanol
8
traditional catalysts
8
metal-organic frameworks
8
carbon dioxide
8
methane
7
methanol
5
advances catalytic
4
catalytic conversion
4
conversion methane
4
methanol challenges
4

Similar Publications

The Cu site in particulate methane monooxygenase may be used to produce hydrogen peroxide.

Dalton Trans

January 2025

Department of Computational Chemistry, Lund University, Chemical Centre, P. O. Box 124, SE-221 00 Lund, Sweden.

Particulate methane monooxygenase (pMMO) is the most efficient of the two groups of enzymes that can hydroxylate methane. The enzyme is membrane bound and therefore hard to study experimentally. For that reason, there is still no consensus regarding the location and nature of the active site.

View Article and Find Full Text PDF

Partial oxidation of methane (POM) is achieved by forming air-methane microbubbles in saltwater to which an alternating electric field is applied using a copper oxide foam electrode. The solubility of methane is increased by putting it in contact with water containing dissolved KCl or NaCl (3%). Being fully dispersed as microbubbles (20-40 µm in diameter), methane reacts more fully with hydroxyl radicals (OH·) at the gas-water interface.

View Article and Find Full Text PDF

Continuous photo-oxidation of methane to methanol at an atomically tailored reticular gas-solid interface.

Nat Commun

January 2025

Research Center for Solar Driven Carbon Neutrality, School of Physics Science and Technology, In-stitute of Life Science and Green Development, Hebei University, Baoding, 071002, PR China.

Photo-oxidation of methane (CH) using hydrogen peroxide (HO) synthesized in situ from air and water under sunlight offers an attractive route for producing green methanol while storing intermittent solar energy. However, in commonly used aqueous-phase systems, photocatalysis efficiency is severely limited due to the ultralow availability of CH gas and HO intermediate at the flooded interface. Here, we report an atomically modified metal-organic framework (MOF) membrane nanoreactor that promotes direct CH photo-oxidation to methanol at the gas-solid interface in a reticular open framework.

View Article and Find Full Text PDF

Alchemical Free-Energy Calculations at Quantum-Chemical Precision.

J Phys Chem Lett

January 2025

Institute for Molecular Modeling and Simulation, Department of Material Sciences and Process Engineering, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, Vienna 1190, Austria.

In the past decade, machine-learned potentials (MLP) have demonstrated the capability to predict various QM properties learned from a set of reference QM calculations. Accordingly, hybrid QM/MM simulations can be accelerated by replacement of expensive QM calculations with efficient MLP energy predictions. At the same time, alchemical free-energy perturbations (FEP) remain unachievable at the QM level of theory.

View Article and Find Full Text PDF

Direct Methane to Methanol Conversion: An Overview of Non-Syn Gas Catalytic Strategies.

Chem Rec

January 2025

Bioinspired & Biomimetic Inorganic Chemistry Laboratory, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala, 673601, India.

Direct methane to methanol conversion is a dream reaction in industrial chemistry, which takes inspiration from the biological methanol production catalysed by methane monooxygenase enzymes (MMOs). Over the years, extensive studies have been conducted on this topic by bioengineering the MMOs, and tailoring methods to isolate the MMOs in the active form. Similarly, remarkable achievements have been noted in other methane activation strategies such as the use of heterogeneous catalysts or molecular catalysts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!