The presence of bacterial pathogens such as spp., spp., , , spp., spp., and not only hampers pig production but also carries significant zoonotic implications. The present study aims to conduct a comprehensive meta-analysis spanning over 13 years (2010-2023) to ascertain the prevalence of these zoonotic bacterial pathogens in Indian pig populations. The study seeks to synthesize data from diverse geographic regions within India and underscores the relevance of the One Health framework. A systematic search of electronic databases was meticulously performed. Inclusion criteria encompassed studies detailing zoonotic bacterial pathogen prevalence in pigs within India during the specified timeframe. Pertinent information including authors, publication year, geographical location, sampling techniques, sample sizes, and pathogen-positive case counts were meticulously extracted. The meta-analysis of zoonotic bacterial pathogens in Indian pig populations (2010-2023) unveiled varying prevalence rates: 9% spp., 22% spp., 19% , 12% , 10% spp. and , and 24% spp. The application of random effects further revealed additional variability: 6% spp., 23% spp., 24% , 14% , 10% spp. and , and 35% spp. Notably, the observed heterogeneity (I) varied significantly from 87% to 99%. The meta-analysis findings underscore the pervasive nature of these diseases throughout India's pig populations, accentuating the substantial impact of these pathogens on pig health and the potential for zoonotic transmission. The present study reinforces the importance of the adoption of a comprehensive One Health approach that acknowledges the intricate interplay between animal, human and environmental health.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10610365 | PMC |
http://dx.doi.org/10.3390/pathogens12101266 | DOI Listing |
Microbiol Spectr
January 2025
Department of Poultry Science, Mississippi State University, Starkville, Mississippi, USA.
Unlabelled: are Gram-negative, rod-shaped, entero-invasive foodborne bacteria and are frequently detected in chicken houses and facilities of poultry broiler complexes. The objective of this study was to determine the prevalence, critical entry points, and movement pattern of along different stages of a complex. A total of 1,071 environmental samples were collected from 38 production houses (8 pullet, 10 breeder, and 20 broiler), a hatchery, 6 transport trucks, and a processing plant.
View Article and Find Full Text PDFIntegr Zool
January 2025
Plague Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar.
Plague, a zoonotic disease caused by Yersinia pestis, remains a major public health threat in several parts of the world, including Madagascar. Factors underlying long-term persistence and emergence of the pathogen remain poorly understood. We implemented a longitudinal survey to provide insights into plague reservoir ecology within an endemic focus.
View Article and Find Full Text PDFBackground: Public health is seriously threatened by transmission of zoonotic infection through the food chain. Factors like increasing population, deforestation, high demand for animal protein, and trade of sub-clinically infected animals are the main causes of the spread of infections from asymptomatic animals to humans. Despite several national programs like (The Clean India Mission) prevention of open defecation and water, sanitation, and hygiene (WASH), the incidence of diarrhoeal diseases remains high in India.
View Article and Find Full Text PDFEur J Public Health
January 2025
National Reference Laboratory for Plague, Tularemia and Q Fever, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Akanlu, Kabudar-Ahang, Hamadan, Iran.
The purpose of this study was to assess the prevalence of zoonotic bacteria, including Coxiella burnetii, Bartonella spp., Rickettsia spp., Brucella spp.
View Article and Find Full Text PDFAnim Microbiome
January 2025
Genomics & Bioanalytics, Los Alamos National Laboratory, Los Alamos, NM, 87506, USA.
Background: African buffalo (Syncerus caffer) is a significant reservoir host for many zoonotic and parasitic infections in Africa. These include a range of viruses and pathogenic bacteria, such as tick-borne rickettsial organisms. Despite the considerations of mammalian blood as a sterile environment, blood microbiome sequencing could become crucial for agnostic biosurveillance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!