Methodologies for the synthesis and purification of metabolites, which have been developed following their discovery, analysis, and structural identification, have been involved in numerous life science milestones. The renewed focus on the small molecule domain of biological cells has also created an increasing awareness of the rising gap between the metabolites identified and the metabolites which have been prepared as pure compounds. The design and engineering of resource-efficient and straightforward synthetic methodologies for the production of the diverse and numerous metabolites and metabolite-like compounds have attracted much interest. The variety of metabolic pathways in biological cells provides a wonderful blueprint for designing simplified and resource-efficient synthetic routes to desired metabolites. Therefore, biocatalytic systems have become key enabling tools for the synthesis of an increasing number of metabolites, which can then be utilized as standards, enzyme substrates, inhibitors, or other products, or for the discovery of novel biological functions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10608848 | PMC |
http://dx.doi.org/10.3390/metabo13101097 | DOI Listing |
Water Res
November 2024
State Key Lab of Soil Erosion and Dryland Farming on the Loess Plateau, College of Soil & Water Conservation Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China. Electronic address:
Freeze-thaw (FT) events profoundly perturb the biochemical processes of soil and water in mid- and high-latitude regions, especially the riparian zones that are often recognized as the hotspots of soil-water interactions and thus one of the most sensitive ecosystems to future climate change. However, it remains largely unknown how the heterogeneously composed and progressively discharged meltwater affect the biochemical cycling of the neighbor soil. In this study, stream water from a valley in the Chinese Loess Plateau was frozen at -10°C for 12 hours, and the meltwater (at +10°C) progressively discharged at three stages (T1 ∼ T3) was respectively added to rewet the soil collected from the same stream bed (Soil+T1 ∼ Soil+T3).
View Article and Find Full Text PDFMetabolites
October 2023
MITR, Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego Street 116, 90-924 Lodz, Poland.
Methodologies for the synthesis and purification of metabolites, which have been developed following their discovery, analysis, and structural identification, have been involved in numerous life science milestones. The renewed focus on the small molecule domain of biological cells has also created an increasing awareness of the rising gap between the metabolites identified and the metabolites which have been prepared as pure compounds. The design and engineering of resource-efficient and straightforward synthetic methodologies for the production of the diverse and numerous metabolites and metabolite-like compounds have attracted much interest.
View Article and Find Full Text PDFGut Microbes
December 2023
Mucosal Inflammation Program and Division of Gastroenterology and Hepatology, University of Colorado, Aurora, CO, USA.
Microbiota-derived short-chain fatty acids, including butyrate (BA), have multiple beneficial health effects. In the colon, BA concentrations range from 10 to 20 mM and up to 95% is utilized as energy by the mucosa. BA plays a key role in epithelial-barrier regulation and anti-inflammation, and regulates cell growth and differentiation, at least in part, due to its direct influence on stabilization of the transcription factor hypoxia-inducible factor (HIF).
View Article and Find Full Text PDFJ Genet Eng Biotechnol
December 2022
Faculty of Science, Alexandria University, Alexandria, Egypt.
Background: Natural dyes are present in living organisms such as animals and plants and microorganisms such as fungi, bacteria, algae, and yeast. Pigments are fast and easy growth by using cheap components and do not effect by environmental conditions because they required some physical factors like heat, light, and pH and also they have many biotechnological applications such as medical and industrial needs. The natural pigments can act as antimicrobial agents and are used in drug manufacturing.
View Article and Find Full Text PDFFront Bioeng Biotechnol
July 2022
Henry Wellcome Building for Biocatalysis, Biosciences, University of Exeter, Exeter, United Kingdom.
The biosynthesis of metabolites from available starting materials is becoming an ever important area due to the increasing demands within the life science research area. Access to metabolites is making essential contributions to analytical, diagnostic, therapeutic and different industrial applications. These molecules can be synthesized by the enzymes of biological systems under sustainable process conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!