Insights on the Organ-Dependent, Molecular Sexual Dimorphism in the Zebra Mussel, , Revealed by Ultra-High-Performance Liquid Chromatography-Tandem Mass Spectrometry Metabolomics.

Metabolites

UMR MNHN/CNRS Molécules de Communication et Adaptations des Microorganismes (MCAM), Muséum National d'Histoire Naturelle, 75005 Paris, France.

Published: October 2023

The zebra mussel, , is extensively used as a sentinel species for biosurveys of environmental contaminants in freshwater ecosystems and for ecotoxicological studies. However, its metabolome remains poorly understood, particularly in light of the potential molecular sexual dimorphism between its different tissues. From an ecotoxicological point of view, inter-sex and inter-organ differences in the metabolome suggest variability in responsiveness, which can influence the analysis and interpretation of data, particularly in the case where males and females would be analyzed indifferently. This study aimed to assess the extent to which the molecular fingerprints of functionally diverse tissues like the digestive glands, gonads, gills, and mantle of can reveal tissue-specific molecular sexual dimorphism. We employed a non-targeted metabolomic approach using liquid chromatography high-resolution mass spectrometry and revealed a significant sexual molecular dimorphism in the gonads, and to a lesser extent in the digestive glands, of . Our results highlight the critical need to consider inter-sex differences in the metabolome of to avoid confounding factors, particularly when investigating environmental effects on molecular regulation in the gonads, and to a lesser extent in the digestive glands.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10609167PMC
http://dx.doi.org/10.3390/metabo13101046DOI Listing

Publication Analysis

Top Keywords

molecular sexual
12
sexual dimorphism
12
digestive glands
12
zebra mussel
8
mass spectrometry
8
differences metabolome
8
gonads lesser
8
lesser extent
8
extent digestive
8
molecular
6

Similar Publications

Genetic gradual reduction of OGT activity unveils the essential role of O-GlcNAc in the mouse embryo.

PLoS Genet

January 2025

Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Italy.

The reversible glycosylation of nuclear and cytoplasmic proteins (O-GlcNAcylation) is catalyzed by a single enzyme, namely O-GlcNAc transferase (OGT). The mammalian Ogt gene is X-linked, and it is essential for embryonic development and for the viability of proliferating cells. We perturbed OGT's function in vivo by creating a murine allelic series of four single amino acid substitutions, reducing OGT's catalytic activity to a range of degrees.

View Article and Find Full Text PDF

Background: Synaptic dysfunction is a central pathologic feature of Alzheimer's disease (AD), with synaptic loss even preceding neuronal loss in specific brain regions. In healthy individuals, synaptic function and plasticity are orchestrated through the complex integration of signaling inputs generated by cell surface receptors.

Methods: In this study, we investigate the role of one such receptor, protein tyrosine phosphatase receptor sigma (PTPRS), in the context of Alzheimer's disease.

View Article and Find Full Text PDF

Whole-genome automated assembly pipeline for strains from reference, and clinical samples using the integrated CtGAP pipeline.

NAR Genom Bioinform

March 2025

Departments of Medicine and Pediatrics, Division of Infectious Diseases and Global Health, University of California San Francisco School of Medicine, 550 16th Street, 4th Floor Mission Hall, San Francisco, CA, 94158, USA.

Whole genome sequencing (WGS) is pivotal for the molecular characterization of ()-the leading bacterial cause of sexually transmitted infections and infectious blindness worldwide. WGS can inform epidemiologic, public health and outbreak investigations of these human-restricted pathogens. However, challenges persist in generating high-quality genomes for downstream analyses given its obligate intracellular nature and difficulty with propagation.

View Article and Find Full Text PDF

The mineralocorticoid receptor (MR) is a nuclear transcription factor that plays a critical role in regulating fluid, electrolytes, blood pressure, and hemodynamic stability. In conditions such as chronic kidney disease (CKD) and heart failure (HF), MR overactivation leads to increased salt and water retention, inflammatory and fibrotic gene expression, and organ injury. The MR is essential for transcriptional regulation and is implicated in metabolic, proinflammatory, and pro-fibrotic pathways.

View Article and Find Full Text PDF

Sexual dimorphism in lung transcriptomic adaptations in fetal alcohol spectrum disorders.

Respir Res

January 2025

Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, School of Medicine, Wayne State University, 275 E Hancock St, Rm 195, Detroit, MI, 48201, USA.

Current fetal alcohol spectrum disorders (FASD) studies primarily focus on alcohol's actions on the fetal brain although respiratory infections are a leading cause of morbidity/mortality in newborns. The limited studies examining the pulmonary adaptations in FASD demonstrate decreased surfactant protein A and alveolar macrophage phagocytosis, impaired differentiation, and increased risk of Group B streptococcal pneumonia with no study examining sexual dimorphism in adaptations. We hypothesized that developmental alcohol exposure in pregnancy will lead to sexually dimorphic fetal lung morphological and immune adaptations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!