Clinical studies revealed detrimental skeletal and vascular effects of the insulin sensitizer rosiglitazone. We have shown earlier that rosiglitazone accelerates osteoblast differentiation from human mesenchymal stem cells (hMSC) at the expense of increased oxidative stress and cell death. In calcifying human vascular cells, rosiglitazone stimulates pathological mineralization, an effect diminished by the antioxidant resveratrol. Here, we aimed to elucidate transcriptional networks underlying the rosiglitazone-enhanced mineralization phenotype. We performed genome-wide transcriptional profiling of osteogenic hMSCs treated with rosiglitazone for short-term periods of 1 up to 48 h during the first two days of differentiation, a phase that we show is sufficient for rosiglitazone stimulation of mineralization. Microarray-based mRNA expression analysis revealed 190 probes that were differently expressed in at least one condition compared to vehicle-treated control. This rosiglitazone gene signature contained well-known primary PPAR targets and was also endogenously regulated during osteogenic hMSC differentiation and osteoblast-like differentiation of vascular smooth muscle cells (VSMCs) into calcifying vascular cells (CVCs). Comparative analysis revealed rosiglitazone targets that were commonly enriched in osteoblasts and CVCs or specifically enriched in either osteoblasts or CVCs. Finally, we compared expression patterns of CVC-specific genes with patient expression data from carotid plaque versus intact adjacent tissue, and identified five rosiglitazone targets to be differentially regulated in CVCs and carotid plaque but not osteoblasts when compared to their non-mineralizing counterparts. These targets, i.e., PDK4, SDC4, SPRY4, TCF4 and DACT1, may specifically control extracellular matrix mineralization in vascular cells, and hence provide target candidates for further investigations to improve vascular health.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10605243PMC
http://dx.doi.org/10.3390/cells12202462DOI Listing

Publication Analysis

Top Keywords

vascular cells
12
pathological mineralization
8
vascular health
8
rosiglitazone
8
analysis revealed
8
rosiglitazone targets
8
enriched osteoblasts
8
osteoblasts cvcs
8
carotid plaque
8
vascular
7

Similar Publications

Role of Ciliary Neurotrophic Factor in Angiotensin II-Induced Hypertension.

Hypertension

January 2025

Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany (S.A.P., I.Q., D. Arifaj, M.K., D. Argov, L.C.R., J.S.).

Background: Ciliary neurotrophic factor (CNTF), mainly known for its neuroprotective properties, belongs to the IL-6 (interleukin-6) cytokine family. In contrast to IL-6, the effects of CNTF on the vasculature have not been explored. Here, we examined the role of CNTF in AngII (angiotensin II)-induced hypertension.

View Article and Find Full Text PDF

Introduction: The gut microbiota plays a pivotal role in influencing host health, through the production of metabolites and other key signalling molecules. While the impact of specific metabolites or taxa on host cells is well-documented, the broader impact of a disrupted microbiota on immune homeostasis is less understood, which is particularly important in the context of the increasing overuse of antibiotics.

Methods: Female C57BL/6 mice were gavaged twice daily for four weeks with Vancomycin, Polymyxin B, or PBS (control).

View Article and Find Full Text PDF

Background: Adenocarcinoma of the esophagogastric junction (AEGJ) is a highly aggressive tumor that frequently metastasizes to the liver. Understanding the cellular and molecular mechanisms that drive this process is essential for developing effective therapies.

Methods: We employed single-cell RNA sequencing to analyze the tumor heterogeneity and microenvironmental landscape in patients with AEGJ liver metastases.

View Article and Find Full Text PDF

Low fracture toughness, low-temperature degradation (LTD) susceptibility, and inadequate soft tissue integration greatly limit the application of zirconia ceramic abutment. Integrating the "surface" of hard all-ceramic materials into the gingival soft tissue and simultaneously promoting the "inner" LTD resistance and fracture toughness is challenging. Composite ceramics are effective in improving the comprehensive properties of materials.

View Article and Find Full Text PDF

Circulating Cell-Free DNA in Metabolic Diseases.

J Endocr Soc

January 2025

Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig 04103, Germany.

Metabolic diseases affect a consistent part of the human population, leading to rising mortality rates. This raises the need for diagnostic tools to monitor the progress of these diseases. Lately, circulating cell-free DNA (cfDNA) has emerged as a promising biomarker for various metabolic diseases, including obesity, type 2 diabetes, and metabolic-associated fatty liver disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!