Intensity interrogation-based surface plasmon resonance imaging (ISPRi) sensing has a simple schematic design and is the most widely used surface plasmon resonance technology at present. In this study, we report the successful development of a novel high-sensitivity ISPRi biosensor and its application for apoptosis detection in cancer cells. By optimizing the excitation wavelength and excitation angle, we achieved a refractive index resolution (RIR) of 5.20 × 10 RIU. Importantly, the biosensor has been tested and validated for high-throughput and label-free detection of activated caspase-3 with its specific inhibitor Z-DEVD-FMK in apoptotic cells. Therefore, this study describes a novel molecular imaging system to monitor apoptosis in cancers for disease diagnosis and/or evaluation of therapeutic efficacy of anti-cancer drugs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10605221PMC
http://dx.doi.org/10.3390/bios13100946DOI Listing

Publication Analysis

Top Keywords

surface plasmon
12
plasmon resonance
12
intensity interrogation-based
8
resonance imaging
8
apoptosis detection
8
detection cancer
8
interrogation-based high-sensitivity
4
high-sensitivity surface
4
imaging biosensor
4
biosensor apoptosis
4

Similar Publications

Molecular mechanisms of cis-oxygen bridge neonicotinoids to Apis mellifera Linnaeus chemosensory protein: Surface plasmon resonance, multiple spectroscopy techniques, and molecular modeling.

Ecotoxicol Environ Saf

January 2025

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China. Electronic address:

Honeybees, essential pollinators for maintaining biodiversity, are experiencing a sharp population decline, which has become a pressing environmental concern. Among the factors implicated in this decline, neonicotinoid pesticides, particularly those belonging to the fourth generation, have been the focus of extensive scrutiny due to their potential risks to honeybees. This study investigates the molecular basis of these risks by examining the binding interactions between Apis mellifera L.

View Article and Find Full Text PDF

Despite substantial advances in the antitumor effects of annonaceous acetogenins (ACGs), the absence of a defined biological action mechanism remains a major barrier to their clinical application. Here, it is found that squamocin effectively depletes both EZH2 and MYC in multiple cancer cell lines, including head and neck squamous cell carcinoma, and gastric and colorectal cancer, demonstrating potent efficacy in suppressing these in vivo tumor models. Through the combination of surface plasmon resonance (SPR), differential scanning fluorimetry (DSF), and cellular thermal shift assay (CETSA), heat shock protein 90α (HSP90α) is identified as the direct binding target of squamocin.

View Article and Find Full Text PDF

Efficient Second Harmonic Generation via Plasmonic-Photonic Mode Matching in Hybrid Waveguide.

Nano Lett

January 2025

School of Physics and Technology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China.

Hybrid nonlinear plasmonic waveguides, characterized by a small mode area and large nonlinear susceptibility, present an intriguing and practical platform for the minimization of nonlinear photonic devices. Nevertheless, the intrinsic Ohmic loss associated with surface plasmon polaritons (SPPs) and modal dispersion imposes constraints on the effective interaction length and, consequently, the ultimate efficiency of nonlinear processes. In this study, we demonstrate an efficient second harmonic generation (SHG) within a hybrid plasmonic waveguide by leveraging SPP-like modes at the fundamental wave and photonic-like modes at the SHG under phase matching conditions.

View Article and Find Full Text PDF

Two versatile yet simple methods, colorimetric and spectrofluorimetric, were utilized for the quantitation of nonchromophore neomycin using silver nanoparticles modified with fluorescein. Fluorescein was excited at 485 nm (emission at 515 nm); when it is deposited on the surface of silver nanoparticles, its fluorescence intensity at 515 nm is quenched. Neomycin restores the fluorescence level at 515 nm by displacing fluorescein from nanoparticle binding sites.

View Article and Find Full Text PDF

Harnessing Nanomaterials for Next-Generation DNA Methylation Biosensors.

Small

January 2025

Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.

DNA methylation is an epigenetic mechanism that regulates gene expression and is implicated in diseases such as cancer and atherosclerosis. However, traditional clinical methods for detecting DNA methylation often lack sensitivity and specificity, making early diagnosis challenging. Nanomaterials offer a solution with their unique properties, enabling highly sensitive photochemical and electrochemical detection techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!