Sodium has many vital and diverse roles in the human body, including maintaining the cellular pH, generating action potential, and regulating osmotic pressure. In cancer, sodium dysregulation has been correlated with tumor growth, metastasis, and immune cell inhibition. However, most in vivo sodium measurements are performed via Na NMR, which is handicapped by slow acquisition times, a low spatial resolution (in mm), and low signal-to-noise ratios. We present here a plasticizer-free, ionophore-based sodium-sensing nanoparticle that utilizes a solvatochromic dye transducer to circumvent the pH cross-sensitivity of most previously reported sodium nano-sensors. We demonstrate that this nano-sensor is non-toxic, boasts a 200 μM detection limit, and is over 1000 times more selective for sodium than potassium. Further, the in vitro photoacoustic calibration curve presented demonstrates the potential of this nano-sensor for performing the in vivo chemical imaging of sodium over the entire physiologically relevant concentration range.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10605089 | PMC |
http://dx.doi.org/10.3390/bios13100923 | DOI Listing |
J Biophotonics
January 2025
State Key Laboratory of Extreme Photonics and Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, China.
Three-photon fluorescence (3PF) microscopy encounters significant challenges in biological research and clinical applications, primarily due to the limited availability of high-performance probes. We took a shortcut by exploring the excellent 3PF property of berberine hydrochloride (BH), a clinically utilized drug derived from the traditional Chinese medicine, Coptis. Capitalizing on its renal metabolism characteristics, we employed BH for in vivo 3PF microscopic imaging of the mouse kidney.
View Article and Find Full Text PDFSmall
January 2025
Molecular Imaging Center, National Center for Drug Screening, Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China.
Nanomaterials with unparalleled physical and chemical attributes have become a cornerstone in the field of nanomedicine delivery. These materials can be engineered into various functionalized nanocarriers, which have become the focus of research. Stimulus-responsive nanodrug delivery systems (SRDDS) stand out as a sophisticated class of nanocarriers that can release drugs in response to environmental cues.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
Orthopedic, maxillofacial, and complex dentoalveolar bone grafting procedures that require donor-site bone harvesting can be associated with post-surgical complications. There has been widespread adoption of exogenously sourced particulate bone graft materials (BGM) for bone regenerative procedures; however, the particulate nature of these materials may lead to compromised healing outcomes, mainly attributed to structural collapse of the BGM, prolonged tissue healing. In this study, a fully synthetic thermoresponsive hydrogel-based universal carrier matrix (TX) that forms flowable and shapable putties with different BGMs while spatially preserving the particles in a 3D scaffold at the implantation site is introduced.
View Article and Find Full Text PDFMater Today Bio
February 2025
Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
The large recruitment of tumor-associated macrophages and low exposure of tumor-associated antigens in tumor microenvironment have severely suppress the efficacy of anti-tumor immunotherapy. Herein, biosynthesized magnetosome (Mag) from bacteria was loaded with photothermal/photodynamic agent/near infrared (NIR) fluorescence dye (IR780) and further modified with lipid-PEG-c(RGDyK) through biomembrane, forming Mag for fluorescence imaging, magnetic resonance imaging, immunotherapy and photodynamic/photothermal therapy. After intravenous injection into B16F10 tumor-bearing mice, Mag could efficiently accumulate in tumor tissues based on near infrared (NIR) fluorescence and magnetic resonance dual-modality imaging, and repolarize tumor-associated macrophages (TAMs) from M2 phenotype to M1 phenotype, significantly improving the effect of tumor immunotherapy.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, People's Republic of China.
Glioma is the most common primary malignant brain tumor with a poor survival rate. It is characterized by diffuse and invasive growth and heterogeneity, which limits tumor identification and complete resection. Therefore, the precise detection and postoperative adjuvant therapy of gliomas have become increasingly important and urgent.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!