Cardiogenic pulmonary edema (CPE) is characterized by the development of acute respiratory failure associated with the accumulation of fluid in the lung's alveolar spaces due to an elevated cardiac filling pressure. All cardiac diseases, characterized by an increasing pressure in the left side of the heart, can cause CPE. High capillary pressure for an extended period can also cause barrier disruption, which implies increased permeability and fluid transfer into the alveoli, leading to edema and atelectasis. The breakdown of the alveolar-epithelial barrier is a consequence of multiple factors that include dysregulated inflammation, intense leukocyte infiltration, activation of procoagulant processes, cell death, and mechanical stretch. Reactive oxygen and nitrogen species (RONS) can modify or damage ion channels, such as epithelial sodium channels, which alters fluid balance. Some studies claim that these patients may have higher levels of surfactant protein B in the bloodstream. The correct approach to patients with CPE should include a detailed medical history and a physical examination to evaluate signs and symptoms of CPE as well as potential causes. Second-level diagnostic tests, such as pulmonary ultrasound, natriuretic peptide level, chest radiograph, and echocardiogram, should occur in the meantime. The identification of the specific CPE phenotype is essential to set the most appropriate therapy for these patients. Non-invasive ventilation (NIV) should be considered early in the treatment of this disease. Diuretics and vasodilators are used for pulmonary congestion. Hypoperfusion requires treatment with inotropes and occasionally vasopressors. Patients with persistent symptoms and diuretic resistance might benefit from additional approaches (i.e., beta-agonists and pentoxifylline). This paper reviews the pathophysiology, clinical presentation, and management of CPE.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10604083PMC
http://dx.doi.org/10.3390/arm91050034DOI Listing

Publication Analysis

Top Keywords

cardiogenic pulmonary
8
pulmonary edema
8
cpe
6
edema emergency
4
emergency medicine
4
medicine cardiogenic
4
edema cpe
4
cpe characterized
4
characterized development
4
development acute
4

Similar Publications

Validity and Accuracy of the Derived Left Ventricular End-Diastolic Pressure in Impella 5.5.

Circ Heart Fail

January 2025

Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Germany. (R.P., J.S.H., D.B., A.S.M., M.H., A.Z., G.D., J.D.S., A.F.P., A.W., A.R., B.S.).

Background: Consensus regarding on-support evaluation and weaning concepts from Impella 5.5 support is scarce. The derived left ventricular end-diastolic pressure (dLVEDP), estimated by device algorithms, is a rarely reported tool for monitoring the weaning process.

View Article and Find Full Text PDF

Background: Acute type A aortic dissection (ATAAD) requires emergency surgery, but the choice of primary surgery remains controversial. It is believed that simple ascending aorta replacement may lead to higher postoperative survival rate, while the Sun procedure [frozen elephant trunk (FET) + total arch replacement (TAR)] performed in the first stage may obtain better long-term results. The study aimed to compare the outcome of ATAAD patients who underwent the Sun procedure with those without TAR + FET.

View Article and Find Full Text PDF

A young female patient suffered cardiogenic shock after undergoing surgery for an ectopic pregnancy. Coronary artery computed tomography angiography (CTA) revealed a left main artery (LM) originating from the right coronary sinus and traveling between the aorta and pulmonary artery. We successfully resuscitated the patient with mechanical circulatory support using veno-arterial extracorporeal membrane oxygenation (VA-ECMO) and an intra-aortic balloon pump (IABP).

View Article and Find Full Text PDF

Cardiogenic shock (CS) carries a 30-50% in-hospital mortality rate, with little improvement in outcomes in the last decade. Challenges in improving outcomes are closely linked to the frequent late presentation or diagnosis of CS where the 'point of no return' has often passed, leading to haemodynamic dysregulation, progressive myocardial depression, hypotension, and a downward spiral of hypoperfusion, organ dysfunction and decreasing myocardial function, driven by inflammation and metabolic derangements. Novel therapeutic interventions may have varying efficacy depending on the type and stage of shock in which they are applied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!