AI Article Synopsis

Article Abstract

One of the most prevalent worldwide problems that affect all ages and genders is skin burn. The goal of our study was to assess the ability of curcumin nanoparticles to cure a rat burn model. Three formulations were selected after several tests were performed including investigation of encapsulation efficiency, particle size and zeta potential measurements. release was achieved on the three selected formulations. The effectiveness of the chosen formulation for healing was evaluated. The induced burn wound was smeared, starting just after excision, once daily with curcumin nanoparticles for 18 days. Our findings revealed that curcumin nanoparticles improved the burn healing potential by augmenting the skin regeneration indices as evidenced by enhancing the new production of hyaluronic acid and collagen type I. Additionally, curcumin nanoparticles could increase levels of vascular endothelial growth factor and alpha smooth muscle activity while drastically reducing the skin's tumour necrosis factor content, revealing a significant potential for burn healing process that is also reflected in the histopathological and immunohistochemical studies. Finally, our results demonstrated that curcumin nanoparticles revealed a significant potential for burn healing than curcumin alone due to its potent antimicrobial, antioxidant and anti-inflammatory properties.

Download full-text PDF

Source
http://dx.doi.org/10.1080/1061186X.2023.2276662DOI Listing

Publication Analysis

Top Keywords

curcumin nanoparticles
20
burn healing
16
potential burn
8
curcumin
7
burn
7
nanoparticles
6
healing
5
chitosan tamarind-based
4
tamarind-based nanoparticles
4
nanoparticles promising
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!