Background: Machine-learning based clinical decision support systems (CDSSs) have been proposed as a means of advancing personalized treatment planning for disorders, such as depression, that have a multifaceted etiology, course, and symptom profile. However, machine-learning based models for treatment selection are rare in the field of psychiatry. They have also not yet been translated for use in clinical practice. Understanding key stakeholder attitudes toward machine learning-based CDSSs is critical for developing plans for their implementation that promote uptake by both providers and families.

Methods: In Study 1, a machine-learning based Clinical Decision Support System for Youth Depression (CDSS-YD) was demonstrated to focus groups of adolescents with a diagnosis of depression (n = 9), parents (n = 11), and behavioral health providers (n = 8). Qualitative analysis was used to assess their attitudes towards the CDSS-YD. In Study 2, behavioral health providers were trained in the use of the CDSS-YD and they utilized the CDSS-YD in a clinical encounter with 6 adolescents and their parents as part of their treatment planning discussion. Following the appointment, providers, parents, and adolescents completed a survey about their attitudes regarding the use of the CDSS-YD.

Results: All stakeholder groups viewed the CDSS-YD as an easy to understand and useful tool for making personalized treatment decisions, and families and providers were able to successfully use the CDSS-YD in clinical encounters. Parents and adolescents viewed their providers as having a critical role in the use the CDSS-YD, and this had implications for the perceived trustworthiness of the CDSS-YD. Providers reported that clinic productivity metrics would be the primary barrier to CDSS-YD implementation, with the creation of protected time for training, preparation, and use as a key facilitator.

Conclusions: The CDSS-YD has the potential to be a widely accepted and useful tool for personalized treatment planning. Successful implementation will require addressing the system-level barrier of having sufficient time and energy to integrate it into practice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10602074PMC
http://dx.doi.org/10.21203/rs.3.rs-3374103/v1DOI Listing

Publication Analysis

Top Keywords

machine-learning based
16
based clinical
12
clinical decision
12
decision support
12
personalized treatment
12
treatment planning
12
cdss-yd
10
support system
8
youth depression
8
behavioral health
8

Similar Publications

Urban waterfront areas, which are essential natural resources and highly perceived public areas in cities, play a crucial role in enhancing urban environment. This study integrates deep learning with human perception data sourced from street view images to study the relationship between visual landscape features and human perception of urban waterfront areas, employing linear regression and random forest models to predict human perception along urban coastal roads. Based on aesthetic and distinctiveness perception, urban coastal roads in Xiamen were classified into four types with different emphasis and priorities for improvement.

View Article and Find Full Text PDF

Previous studies have highlighted the inherent subjectivity, complexity, and challenges associated with research quality leading to fragmented findings. We identified determinants of research publication quality in terms of research activities and the use of information and communication technologies by employing an interdisciplinary approach. We conducted web-based surveys among academic scientists and applied machine learning techniques to model behaviors during and after the COVID-19 pandemic.

View Article and Find Full Text PDF

Student performance is crucial for addressing learning process problems and is also an important factor in measuring learning outcomes. The ability to improve educational systems using data knowledge has driven the development of the field of educational data mining research. Here, this paper proposes a machine learning method for the prediction of student performance based on online learning.

View Article and Find Full Text PDF

The Role of Artificial Intelligence in Predicting Optic Neuritis Subtypes From Ocular Fundus Photographs.

J Neuroophthalmol

December 2024

Division of Ophthalmology (EB-S, AS, AA-A, AS-B, DW, SS, FC), Department of Surgery, University of Calgary, Calgary, Canada; Department of Biomedical Engineering (CN), University of Calgary, Calgary, Canada; Departments of Neurology (LBDL) and Ophthalmology (LBDL), University of Michigan, Ann Arbor, Michigan; and Department of Clinical Neurosciences (SS, FC), University of Calgary, Calgary, Canada.

Background: Optic neuritis (ON) is a complex clinical syndrome that has diverse etiologies and treatments based on its subtypes. Notably, ON associated with multiple sclerosis (MS ON) has a good prognosis for recovery irrespective of treatment, whereas ON associated with other conditions including neuromyelitis optica spectrum disorders or myelin oligodendrocyte glycoprotein antibody-associated disease is often associated with less favorable outcomes. Delay in treatment of these non-MS ON subtypes can lead to irreversible vision loss.

View Article and Find Full Text PDF

Training accurate machine learning potentials requires electronic structure data comprehensively covering the configurational space of the system of interest. As the construction of this data is computationally demanding, many schemes for identifying the most important structures have been proposed. Here, we compare the performance of high-dimensional neural network potentials (HDNNPs) for quantum liquid water at ambient conditions trained to data sets constructed using random sampling as well as various flavors of active learning based on query by committee.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!