Halide perovskites have shown promise to advance the field of light detection in next-generation photodetectors, offering performance and functionality beyond what is currently possible with traditional inorganic semiconductors. Despite a relatively high density of defects in perovskite thin films, long carrier diffusion lengths and lifetimes suggest that many defects are benign. However, perovskite photodetectors show detection behavior that varies with time, creating inconsistent device performance and difficulties in accurate characterization. Here, we link the changing behavior to mobile defects that migrate through perovskites, leading to detector currents that drift on the time scale of seconds. These effects not only complicate reproducible device performance but also introduce characterization challenges. We demonstrate that such transient phenomena generate measurement artifacts that mean the value of specific detectivity measured can vary by up to 2 orders of magnitude even in the same device. The presence of defects can lead to photoconductive gain in photodetectors, and we show batch-to-batch processing variations in perovskite devices gives varying degrees of charge carrier injection and photocurrent amplification under low light intensities. We utilize the passivating effect of aging to reduce the impact of defects, minimizing current drifts and eliminating the gain. This work highlights the potential issues arising from mobile defects, which lead to inconsistent photodetector operation, and identifies the potential for defects to tune photodetection behavior in perovskite photodetectors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10598628PMC
http://dx.doi.org/10.1021/acsaem.2c03453DOI Listing

Publication Analysis

Top Keywords

perovskite photodetectors
12
transient phenomena
8
device performance
8
mobile defects
8
defects lead
8
defects
7
perovskite
5
photodetectors
5
identification mitigation
4
mitigation transient
4

Similar Publications

Photodetectors based on lead halide perovskites often show excellent performance but poor stability. Herein, we demonstrate a photodetector based on MAPbBr single crystals passivated with an ultrathin layer of PbSO, which shows superior detectivity and on/off ratios compared to the control device due to the combined effect of lower surface traps, reduced recombination and low dark current. In addition, the device retained ∼56% of its initial * with an impressive on/off ratio of ∼801 after one year compared to ∼22% of * and an on/off ratio of ∼6 of the control device.

View Article and Find Full Text PDF

Boosting Carrier Mobility in 2D Layered Perovskites for High-Performance UV Photodetector.

Small Methods

January 2025

Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei, 430074, P. R. China.

2D hybrid perovskites have attracted great interest due to their promising potential in photodetectors. The phase structure, dielectric, and excitonic properties in 2D perovskites play a pivotal role in the performance of the corresponding optoelectronic device. Here a lattice anchoring method is demonstrated to boost carrier mobility in 2D perovskites by tailoring large organic spacer cation layers.

View Article and Find Full Text PDF

Plasma-Enhanced Grain Growth and Non-Radiative Recombination Mitigation in CsSnBr Perovskite Films for High-Performance, Lead-Free Photodetectors.

Small

January 2025

Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China.

Tin-based halide perovskites represent a highly promising and eco-friendly alternative to lead-based materials with significant potential for optoelectronic applications. However, their advancement is hampered by challenges such as poor film crystallinity and unintended self-doping. Herein, this work reports the fabrication of high-quality CsSnBr perovskite films by plasma-assisted chemical vapor deposition (PACVD), which improves the film quality.

View Article and Find Full Text PDF

Perovskite retinomorphic image sensor for embodied intelligent vision.

Sci Adv

January 2025

Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

Retinomorphic systems that can see, recognize, and respond to real-time environmental information will extend the complexity and range of tasks that an exoskeleton robot can perform to better assist physically disabled people. However, the lack of ultrasensitive, reconfigurable, and large-scale integratable retinomorphic devices and advanced edge-processing algorithms makes it difficult to realize retinomorphic hardware. Here, we report the retinomorphic hardware prototype with a 4096-pixel perovskite image sensor array as core module to endow embodied intelligent vision functionalities.

View Article and Find Full Text PDF

Low-dimensional hybrid organic-inorganic perovskites (HOIPs) containing chiral organic ligands have recently emerged as promising candidates for circularly polarized light (CPL) detection, which can distinguish left- and right-handed CPL directly. However, the increase in responsivity and realization of self-powered CPL photodetector remain a challenge. Meanwhile, there is a trade-off between the photocurrent responsivity and the ability to differentially absorb CPL in detectors based on these low-dimensional perovskites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!