Background: Sex determining region Y box transcription factor 2 (SOX2) mutations lead to bilateral anophthalmia with autosomal dominant human inheritance. SOX2 mutations could result in severe ocular phenotypes usually associated with variable systemic defects. Most patients described with SOX2 anophthalmia syndrome possessed de novo mutations in this gene.

Case Presentation: In this case report, we describe 2 brothers with mental retardation and bilateral anophthalmia caused due to SOX2 germline mosaicism in unaffected parents. Next-generation DNA sequencing was carried out to determine the family's possible cause of genetic mutation. Sanger sequencing was performed on the patients and their parents. Prenatal diagnosis was done in both pregnancies of the older brother's wife via chorionic villus sampling. A novel heterozygous pathogenic frameshift deletion variant (exon1:c.58_80del:p.G20fs) was identified in the gene, which was confirmed by Sanger sequencing in both affected brothers and did not exist in healthy parents, indicating germline mosaicism.

Conclusion: Most SOX2 mutations known look to arise de novo in probands and are diagnosed through anophthalmia or microphthalmia. Prenatal diagnosis should be offered to healthy parents with a child with SOX2 mutation every pregnancy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10598473PMC
http://dx.doi.org/10.18502/ijrm.v21i8.14022DOI Listing

Publication Analysis

Top Keywords

prenatal diagnosis
12
sox2 mutations
12
sex determining
8
determining region
8
transcription factor
8
anophthalmia syndrome
8
germline mosaicism
8
case report
8
bilateral anophthalmia
8
sanger sequencing
8

Similar Publications

TBCK (TBC1 Domain-Containing Kinase) encodes a protein playing a role in actin organization and cell growth/proliferation via the mTOR signaling pathway. Deleterious biallelic TBCK variants cause Hypotonia, infantile, with psychomotor retardation and characteristic facies 3. We report on three affected sibs, also displaying cardiac malformations.

View Article and Find Full Text PDF

Advances in Prenatal Cell-Free DNA Screening for Dominant Monogenic Conditions: A Review of Current Progress and Future Directions in Clinical Implementation.

Prenat Diagn

January 2025

Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.

Prenatal cell-free DNA (cfDNA) screening has advanced significantly, extending beyond detecting aneuploidies to sub-chromosomal copy number variations. However, its application for screening dominant single-gene conditions, often caused by de novo variants, remains underutilized in the general obstetric population. This study reviews recent data and experience on prenatal cfDNA screening for dominant monogenic conditions using multiple-gene panels, highlighting its potential to enhance early detection and management of genetic disorders.

View Article and Find Full Text PDF

Objective: To evaluate whether, in late pregnancy, the cerebral Doppler can identify very small fetuses that are less likely to experience intrapartum compromise (IC).

Material And Methods: This was a retrospective study of 282 singleton pregnancies that underwent an ultrasound scan at 32 + 0- 40 + 6 weeks and were delivered after induction, or spontaneous onset of labor. Very small fetuses were defined as fetuses with estimated weight less than the 3rd centile.

View Article and Find Full Text PDF

Objective: Fetal cerebellar abnormalities are associated with neurodevelopmental disorders and structural brain malformations. Accurate and early diagnosis is crucial for prenatal counseling and planning postnatal interventions. While prenatal ultrasound is a key tool for detecting fetal brain abnormalities, variations in diagnostic accuracy across studies necessitate a systematic evaluation of its effectiveness in diagnosing cerebellar abnormalities.

View Article and Find Full Text PDF

Immunomodulatory effect of efferocytosis at the maternal-fetal interface.

Cell Commun Signal

January 2025

Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China.

Efferocytosis is a mechanism by which phagocytes efficiently clear apoptotic cells, averting their secondary necrosis and the subsequent release of potentially immunogenic or cytotoxic substances that can trigger strong immune and inflammatory responses. During efferocytosis, the metabolic pathways of phagocytes are transformed, which, along with the catabolism of apoptotic cargo, can affect their function and inflammatory state. Extensive apoptosis occurs during placental development, and some studies reported the immunomodulatory effects of efferocytosis at the maternal-fetal interface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!