Possible contribution of rare alleles of human ACE2 in the emergence of SARS-CoV-2 variants escaping the immune response.

Front Immunol

Institut National de la Santé et de la Recherche Médicale (INSERM) U_1072, Faculté des Sciences, Aix-Marseille Université, Marseille, France.

Published: November 2023

Since the start of the SARS-CoV-2 pandemic, the rapid replacement of one lineage by another has been observed. Indeed, SARS-CoV-2 is evolving through a quasispecies mechanism leading to post-infection mutation selection under positive evolutionary pressure (host-driven viral evolution). These mutations may reduce the effectiveness of the specific neutralizing immune response against the virus. We provide here evidence that apart from the selection of SARS-CoV-2 variants by the immune system, selection by the cellular receptor can just as well select variants which escape neutralization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10598458PMC
http://dx.doi.org/10.3389/fimmu.2023.1252367DOI Listing

Publication Analysis

Top Keywords

sars-cov-2 variants
8
immune response
8
contribution rare
4
rare alleles
4
alleles human
4
human ace2
4
ace2 emergence
4
sars-cov-2
4
emergence sars-cov-2
4
variants escaping
4

Similar Publications

Background/objectives: This study aimed to determine the percentage and duration of neutralizing antibodies against the Omicron variant in human milk after vaccination against SARS-CoV-2, considering the three different vaccine technologies approved in Brazil.

Methods: A cross-sectional study was conducted with lactating women who received the complete vaccination cycle with available vaccines (AstraZeneca, Pfizer, CoronaVac, and Janssen). The participants resided in Rio de Janeiro, and samples were collected from April to October 2022.

View Article and Find Full Text PDF

Development of Ni-ZnO-ACE-2 peptide hybrids as electrochemical devices for SARS-CoV-2 spike protein detection.

Bioelectrochemistry

January 2025

Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo 09210-580, Brazil. Electronic address:

Owing to fast SARS-CoV-2 mutations, biosensors employing antibodies as biorecognition elements have presented problems with sensitivity and accuracy. To face these challenges, antibodies can be replaced with the human angiotensin converting enzyme 2 (ACE-2), where it has been shown that the affinity between ACE-2 and the receptor binding domain (RBD) increases with the emergence of new variants. Herein, we report on Ni-doped ZnO nanorod electrochemical biosensors employing an ACE-2 peptide (IEEQAKTFLDKFNHEAEDLFYQS-NH) as a biorecognition element for detecting Spike (S) Wild-Type (WT) protein.

View Article and Find Full Text PDF

Unlabelled: Testing for the causative agent of coronavirus disease 2019 (COVID-19), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been crucial in tracking disease spread and informing public health decisions. Wastewater-based epidemiology has helped to alleviate some of the strain of testing through broader, population-level surveillance, and has been applied widely on college campuses. However, questions remain about the impact of various sampling methods, target types, environmental factors, and infrastructure variables on SARS-CoV-2 detection.

View Article and Find Full Text PDF

Aim Traditional Ayurvedic herbo-mineral medicines have proven their potential in managing COVID-19. Cell-based assays of the Svarnvir-IV tablet demonstrated the virucidal activity against SARS-CoV-2 and its therapeutic action, along with safety in cytotoxicity, has been proved. In the present study, in vivo, safety profile and compositional analysis of the Svarnvir-IV tablet were performed.

View Article and Find Full Text PDF

BackgroundEarly detection and characterisation of SARS-CoV-2 variants have been and continue to be essential for assessing their public health impact. In August 2023, Santé publique France implemented enhanced surveillance for BA.2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!