Water-Compatible and Recyclable Heterogeneous SABRE Catalyst for NMR Signal Amplification.

JACS Au

Department of Chemistry, Korea Military Academy, Seoul 01805, South Korea.

Published: October 2023

A water-compatible and recyclable catalyst for nuclear magnetic resonance (NMR) hyperpolarization via signal amplification by reversible exchange (SABRE) was developed. The [Ir(COD)(IMes)Cl] catalyst was attached to a polymeric resin of bis(2-pyridyl)amine (heterogeneous SABRE catalyst, HET-SABRE catalyst), and it amplified the H NMR signal of pyridine up to (-) 4455-fold (43.2%) at 1.4 T in methanol and (-) 50-fold (0.5%) in water. These are the highest amplification factors ever reported among HET-SABRE catalysts and for the first time in aqueous media. Moreover, the HET-SABRE catalyst demonstrated recyclability by retaining its activity in water after more than three uses. This newly designed polymeric resin-based heterogeneous catalyst shows great promise for NMR signal amplification for biomedical NMR and MRI applications in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10598823PMC
http://dx.doi.org/10.1021/jacsau.3c00487DOI Listing

Publication Analysis

Top Keywords

nmr signal
12
signal amplification
12
water-compatible recyclable
8
heterogeneous sabre
8
sabre catalyst
8
het-sabre catalyst
8
catalyst
7
nmr
5
recyclable heterogeneous
4
catalyst nmr
4

Similar Publications

The NMR signals from protein sidechains are rich in information about intra- and inter-molecular interactions, but their detection can be complicated due to spectral overlap as well as conformational and hydrogen exchange. In this work, we demonstrate a protocol for multi-dimensional solid-state NMR spectral editing of signals from basic sidechains based on Hadamard matrix encoding. The Hadamard method acquires multi-dimensional experiments in such a way that both the backbone and under-sampled sidechain signals can be decoded for unambiguous editing in the N spectral frequency dimension.

View Article and Find Full Text PDF

Objectives: To determine whether deep learning-based reconstructions of zero-echo-time (ZTE-DL) sequences enhance image quality and bone visualization in cervical spine MRI compared to traditional zero-echo-time (ZTE) techniques, and to assess the added value of ZTE-DL sequences alongside standard cervical spine MRI for comprehensive pathology evaluation.

Methods: In this retrospective study, 52 patients underwent cervical spine MRI using ZTE, ZTE-DL, and T2-weighted 3D sequences on a 1.5-Tesla scanner.

View Article and Find Full Text PDF

Time-resolved compositional and dynamics analysis of biofilm maturation and dispersal via solid-state NMR spectroscopy.

NPJ Biofilms Microbiomes

January 2025

Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, Zhejiang, China.

Dispersal plays a crucial role in the development and ecology of biofilms. While extensive studies focused on elucidating the molecular mechanisms governing this process, few have characterized the associated temporal changes in composition and structure. Here, we employed solid-state nuclear magnetic resonance (NMR) techniques to achieve time-resolved characterization of Bacillus subtilis biofilms over a 5-day period.

View Article and Find Full Text PDF

Phosphatidic acid (PA) through its unique negatively charged phosphate headgroup binds to various proteins to modulate multiple cellular events. To perform such diverse signaling functions, the ionization and charge of PA's headgroup relies on the properties of vicinal membrane lipids and changes in cellular conditions. Cholesterol has conspicuous effects on lipid properties and membrane dynamics.

View Article and Find Full Text PDF

Baicalein-loaded porous silk fibroin microspheres modulate the senescence of nucleus pulposus cells through the NF-κB signaling pathway.

Colloids Surf B Biointerfaces

January 2025

The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou 510130, PR China; Guangzhou University of Chinese Medicine Postdoctoral Research Station, Guangzhou 510130, PR China. Electronic address:

Intervertebral disc degeneration (IVDD), an age-associated degenerative condition, significantly contributes to low back pain, thereby adversely affecting individual health and quality of life, while also imposing a substantial societal burden. Baicalein, a natural flavonoid derived from Scutellaria baicalensis Georgi, demonstrates a range of pharmacological activities, including antioxidant, anti-inflammatory, anti-tumor, and antibacterial properties. This positions it as a promising candidate for the treatment of IVDD through intradiscal drug delivery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!