AI Article Synopsis

  • The study demonstrates how isolating biomolecules in a high vacuum allows for experiments on delicate molecules without interference.
  • Researchers designed and synthesized photoactive molecular tags that let scientists control the charge on biopolymers using light, specifically with green photons at a wavelength of 532 nm.
  • The tags can be accurately removed when needed, proving effective in both solution and gas phase, showcasing strong potential for studying real proteins and other biomolecules.

Article Abstract

The isolation of biomolecules in a high vacuum enables experiments on fragile species in the absence of a perturbing environment. Since many molecular properties are influenced by local electric fields, here we seek to gain control over the number of charges on a biopolymer by photochemical uncaging. We present the design, modeling, and synthesis of photoactive molecular tags, their labeling to peptides and proteins as well as their photochemical validation in solution and in the gas phase. The tailored tags can be selectively cleaved off at a well-defined time and without the need for any external charge-transferring agents. The energy of a single or two green photons can already trigger the process, and it is soft enough to ensure the integrity of the released biomolecular cargo. We exploit differences in the cleavage pathways in solution and in vacuum and observe a surprising robustness in upscaling the approach from a model system to genuine proteins. The interaction wavelength of 532 nm is compatible with various biomolecular entities, such as oligonucleotides or oligosaccharides.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10598566PMC
http://dx.doi.org/10.1021/jacsau.3c00351DOI Listing

Publication Analysis

Top Keywords

photochemical uncaging
8
biomolecules high
8
high vacuum
8
green light
4
light photochemical
4
uncaging large
4
large biomolecules
4
vacuum isolation
4
isolation biomolecules
4
vacuum enables
4

Similar Publications

Cross-linking mass spectrometry (XL-MS) has seen significant improvements which have enhanced its utility for studying protein-protein interactions (PPIs), primarily due to the emergence of novel crosslinkers and the development of streamlined analysis workflows. Nevertheless, poor membrane permeability and side reactions with water limit the extent of productive intracellular crosslinking events that can be achieved with current crosslinkers. To address these problems, we have synthesized a novel crosslinker with o-nitrobenzyl-based photoresponsive groups.

View Article and Find Full Text PDF

Potent Inhibition and Rapid Photoactivation of Endogenous Bruton's Tyrosine Kinase Activity in Native Cells via Opto-Covalent Modulators.

J Am Chem Soc

October 2024

State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China.

Naturally, kinases exert their activities in a highly regulated fashion. A number of ingenious approaches have been developed to artificially control kinase activity by external stimuli, such as the incorporation of unnatural amino acids or the fusion of additional protein domains; however, methods that directly modulate endogenous kinases in native cells are lacking. Herein, we present a facile and potent method that takes advantage of recent developments in targeted covalent inhibitors and rapid light-mediated uncaging chemistry.

View Article and Find Full Text PDF

A series of fluorophores based on the (5-methyl-4-phenylthiazol-2-yl)-3-phenylacrylonitrile (MPTA) core were designed and synthesised for photocaging of amino acids and peptides. The photophysical characteristics of these compounds and their hybrids with biomolecules were thoroughly investigated through a joint experimental, spectral and computational approach. The photorelease ability of the obtained amino acids-MPTA and peptides-MPTA hybrids was studied under various conditions, including different UV irradiation wavelength and power, and solvents.

View Article and Find Full Text PDF
Article Synopsis
  • Controlling chemical processes with precision is crucial for areas like biomedical research and drug manufacturing, yet there's a need for universal methods to adjust reactivity in organic photosensitizers.
  • This study highlights a new strategy that allows for the fine-tuning of singlet oxygen production using bioresponsive stimuli, demonstrating that photocatalytic activity can be blocked and then activated with various triggers.
  • The approach is applicable to a wide range of photosensitizers and can be utilized in practical applications, such as targeted destruction of human cells and enhancing the release of singlet oxygen in the synthesis of natural product drugs.
View Article and Find Full Text PDF

Polymeric materials bearing Frustrated Lewis Pair (FLP) functionality are promising candidates for use as heterogeneous catalysts and adaptive materials, but synthetic access to FLP-functional polymers remains limited due to the incompatibility of FLPs with standard polymerization chemistries. Herein, we describe a synthetic approach that "cages" highly reactive vicinal phosphine-borane FLPs as covalent alkene adducts, which are stable to Ni-mediated vinyl addition polymerization. We discovered that the caged FLP adducts can be photochemically activated to liberate vicinal FLPs, enabling spatiotemporally controlled release of FLPs from polymeric precursors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!