Microwave-Responsive Flexible Room-Temperature Phosphorescence Materials Based on Poly(vinylidene fluoride) Polymer.

Angew Chem Int Ed Engl

School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun street, Haidian district, Beijing, 100081, P. R. China.

Published: December 2023

The development of flexible, room-temperature phosphorescence (RTP) materials remains challenging owing to the quenching of their unstable triplet excitons via molecular motion. Therefore, a polymer matrix with T higher than room temperature is required to prevent polymer segment movement. In this study, a RTP material was developed by incorporating a 4-biphenylboronic acid (BPBA) phosphor into a poly(vinylidene fluoride) (PVDF) matrix (T =-27.1 °C), which exhibits a remarkable UV-light-dependent oxygen consumption phosphorescence with a lifetime of 1275.7 ms. The adjustable RTP performance is influenced by the crystallinity and polymorph (α, β, and γ phases) fraction of PVDF, therefore, the low T of the PVDF matrix enables the polymeric segmental motion upon microwave irradiation. Consequently, a reduction in the crystallinity and an increase in the α phase fraction in PVDF film induces RTP after 2.45 GHz microwave irradiation. These findings open up new avenues for constructing crystalline and phase-dependent RTP materials while demonstrating a promising approach toward microwave detection.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202314273DOI Listing

Publication Analysis

Top Keywords

flexible room-temperature
8
room-temperature phosphorescence
8
polyvinylidene fluoride
8
rtp materials
8
pvdf matrix
8
fraction pvdf
8
microwave irradiation
8
rtp
5
microwave-responsive flexible
4
phosphorescence materials
4

Similar Publications

Correction: Investigation of a flexible, room-temperature fiber-shaped NH sensor based on PANI-Au-SnO.

RSC Adv

January 2025

Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, Beijing Institute of Fashion Technology Beijing 100029 P. R. China

[This corrects the article DOI: 10.1039/D4RA06915C.].

View Article and Find Full Text PDF

Nanomagnetism Triggering Carriers Double-Resistance Conduction and Excellent Flexible Thermoelectrics.

Adv Mater

January 2025

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China.

Nanomagnetism may enable electrical conductivity and Seebeck coefficient to be decoupled and can potentially lead to remarkable enhancements in thermoelectric (TE) performance, however, their physical mechanisms have not been explored. Herein, it is shown that the nanomagnetism from Fe and FeO nanoparticles embedded in BiSbTe/epoxy flexible films can lead to the carriers splitting into spin-up and spin-down conductive branches with different resistances and mobilities due to the exchange interaction between the spin of carriers and the nanomagnetism. The double-resistance conduction of carriers may well explain the decoupling of electrical conductivity and Seebeck coefficient and their simultaneous enhancements in the thermo-electro-magnetic flexible films.

View Article and Find Full Text PDF

We have proposed and developed a method for measuring the thermal conductivity of highly efficient thermal conductors. The measurement method was tested on pure metals with high thermal conductivity coefficients: aluminum (99.999 wt.

View Article and Find Full Text PDF

Objective: To compare the cyclic fatigue resistance of nickel-titanium files made by 3 new heat treatment in simulated S-shaped root canals at different temperatures.

Methods: Gold heat-treated nickel-titanium files TruNatomy (25 mm, tip size 26#/0.04) and ProTaper Gold (25 mm, tip size 25#/0.

View Article and Find Full Text PDF

CRISPR analysis based on Pt@MOF dual-modal signal for multichannel fluorescence and visual detection of norovirus.

Biosens Bioelectron

January 2025

Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Academy of Military Sciences, Tianjin, 300050, China. Electronic address:

Norovirus is a globally prevalent pathogen that causes acute viral gastroenteritis across all age groups, characterized by its high infectivity and low infectious dose. Consequently, the development of rapid, sensitive, and accurate detection technologies for norovirus presents a significant challenge. In this study, we demonstrate a combination of CRISPR-Cas-based reactions with Pt@MOF-linked immunoassay-like assays.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!