Objective: Artificial intelligence (AI) prediction is increasingly used for decision making in health care, but its application for adverse outcomes in emergency department (ED) patients with acute pancreatitis (AP) is not well understood. This study aimed to clarify this aspect.

Methods: Data from 8274 ED patients with AP in three hospitals from 2009 to 2018 were analyzed. Demographic data, comorbidities, laboratory results, and adverse outcomes were included. Six algorithms were evaluated, and the one with the highest area under the curve (AUC) was implemented into the hospital information system (HIS) for real-time prediction. Predictive accuracy was compared between the AI model and Bedside Index for Severity in Acute Pancreatitis (BISAP).

Results: The mean ± SD age was 56.1 ± 16.7 years, with 67.7% being male. The AI model was successfully implemented in the HIS, with Light Gradient Boosting Machine (LightGBM) showing the highest AUC for sepsis (AUC 0.961) and intensive care unit (ICU) admission (AUC 0.973), and eXtreme Gradient Boosting (XGBoost) showing the highest AUC for mortality (AUC 0.975). Compared to BISAP, the AI model had superior AUC for sepsis (BISAP 0.785), ICU admission (BISAP 0.778), and mortality (BISAP 0.817).

Conclusions: The first real-time AI prediction model implemented in the HIS for predicting adverse outcomes in ED patients with AP shows favorable initial results. However, further external validation is needed to ensure its reliability and accuracy.

Download full-text PDF

Source
http://dx.doi.org/10.1111/acem.14824DOI Listing

Publication Analysis

Top Keywords

adverse outcomes
16
acute pancreatitis
12
artificial intelligence
8
emergency department
8
real-time prediction
8
model implemented
8
gradient boosting
8
showing highest
8
highest auc
8
auc sepsis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!