Background: The success of cephalometric analysis depends on the accurate detection of cephalometric landmarks on scanned lateral cephalograms. However, manual cephalometric analysis is time-consuming and can cause inter- and intra-observer variability. The purpose of this study was to automatically detect cephalometric landmarks on scanned lateral cephalograms with low contrast and resolution using an attention-based stacked regression network (Ceph-Net).

Methods: The main body of Ceph-Net compromised stacked fully convolutional networks (FCN) which progressively refined the detection of cephalometric landmarks on each FCN. By embedding dual attention and multi-path convolution modules in Ceph-Net, the network learned local and global context and semantic relationships between cephalometric landmarks. Additionally, the intermediate deep supervision in each FCN further boosted the training stability and the detection performance of cephalometric landmarks.

Results: Ceph-Net showed a superior detection performance in mean radial error and successful detection rate, including accuracy improvements in cephalometric landmark detection located in low-contrast soft tissues compared with other detection networks. Moreover, Ceph-Net presented superior detection performance on the test dataset split by age from 8 to 16 years old.

Conclusions: Ceph-Net demonstrated an automatic and superior detection of cephalometric landmarks by successfully learning local and global context and semantic relationships between cephalometric landmarks in scanned lateral cephalograms with low contrast and resolutions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10604948PMC
http://dx.doi.org/10.1186/s12903-023-03452-7DOI Listing

Publication Analysis

Top Keywords

cephalometric landmarks
28
detection cephalometric
16
landmarks scanned
16
scanned lateral
16
lateral cephalograms
16
detection performance
12
superior detection
12
cephalometric
11
detection
10
attention-based stacked
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!