Chimeric antigen receptor (CAR) T cells are changing the therapeutic landscape for hematological malignancies. To date, all six CAR T cell products approved by the US Food and Drug Administration (FDA) are autologous and centrally manufactured. As the numbers of approved products and indications continue to grow, new strategies to increase cell-manufacturing capacity are urgently needed to ensure patient access. Distributed manufacturing at the point of care or at other local manufacturing sites would go a long way toward meeting the rising demand. To ensure successful implementation, it is imperative to harness novel technologies to achieve uniform product quality across geographically dispersed facilities. This includes the use of automated cell-production systems, in-line sensors and process simulation for enhanced quality control and efficient supply chain management. A comprehensive effort to understand the critical quality attributes of CAR T cells would enable better definition of widely attainable release criteria. To supplement oversight by national regulatory agencies, we recommend expansion of the role of accreditation bodies. Moreover, regulatory standards may need to be amended to accommodate the unique characteristics of distributed manufacturing models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41587-023-01981-8 | DOI Listing |
Clin Kidney J
January 2025
Department of Medicine, Universidad Autonoma de Madrid and IIS-Fundacion Jimenez Diaz, Madrid, Spain.
Chimeric antigen receptor T (CAR-T) cell therapy, an emerging personalized immunotherapy for various haematologic malignancies, autoimmune diseases and other conditions, involves the modification of patients' T cells to express a chimeric antigen receptor that recognizes tumour or autoimmune cell antigens, allowing CAR-T cells to destroy cancerous and other target cells selectively. Despite remarkable clinical improvements in patients, multiple adverse effects have been associated with CAR-T cell therapy. Among the most recognized adverse effects are cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome and tumour lysis syndrome.
View Article and Find Full Text PDFFront Immunol
January 2025
Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.
Resistance to the currently available treatment paradigms is one of the main factors that contributes to poor outcomes in patients with advanced cervical cancer. Novel targeted therapy approaches might enhance the patient's treatment outcome and are urgently needed for this malignancy. While chimeric-antigen receptor (CAR)-based adoptive immunotherapy displays a promising treatment strategy for liquid cancers, their use against cervical cancer is largely unexplored.
View Article and Find Full Text PDFJ Inflamm Res
January 2025
Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Faculty of Medicine of the Military Medical Academy, University of Defense, Belgrade, Serbia.
Purpose: The aim of the retrospective, single-center study was to assess the prognostic value of immune cell-based and albumin-based ratios regarding lethal outcome in critically ill COVID-19 patients.
Patients And Methods: We analyzed 612 adult critically ill COVID-19 patients admitted to the intensive care unit (ICU) between April 2020 and November 2022. Blood measurement on admission to the ICU encompassed complete blood count (CBC), IL-6, C-reactive protein (CRP), albumin, lactate, lactate dehydrogenase (LDH), serum bicarbonate, arterial base deficit/excess (BD/E), and D-dimer.
Mov Disord Clin Pract
January 2025
Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Dvision of Neurology, Toronto Western Hospital, UHN, Krembil Brain Institute, University of Toronto, Toronto, Ontario, Canada.
J Nanobiotechnology
January 2025
Department of Laboratory, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China.
Background: Cardiac fibrosis plays a critical role in the progression of various forms of heart disease, significantly increasing the risk of sudden cardiac death. However, currently, there are no therapeutic strategies available to prevent the onset of cardiac fibrosis.
Methods And Results: Here, biomimetic ATP-responsive nanozymes based on genetically engineered cell membranes are adapted to specifically recognize activated cardiac fibroblasts (CFs) for the treatment of cardiac fibrosis.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!