Based on the attractive properties of phosphate glass, improved molybdenum phosphate glasses of composition 40PO, 20MoO, 15MgO, (25-x)LiO, xSrO, [x = 0, 5, 10, 15 and 20 mol %] were prepared via the melt-quench technique. They were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), UV-visible reflectance and Electron spin resonance (ESR). FTIR confirmed the existence of several structural phosphate groups other than MoO and MoO units. Optical analysis revealed the active species of molybdenum ions. SrO addition decreases the bandgap energy, converting the glass insulator features into semiconductor properties. The measured AC electrical conductivity (σ) increased within the temperature range of 298-473(K) and decreased in the frequency range of 0.042 kHz-1 MHz. The estimated DC electrical conductivity increased with temperature, suggesting the semiconducting behavior. The highest electrical conductivity was found in base and 5% SrO samples. Therefore, it appears that the prepared glasses are viable candidates for opto-electronic applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10603061PMC
http://dx.doi.org/10.1038/s41598-023-45333-7DOI Listing

Publication Analysis

Top Keywords

electrical conductivity
16
molybdenum phosphate
8
conductivity increased
8
increased temperature
8
enhancement electrical
4
conductivity
4
conductivity associated
4
associated non-bridged
4
non-bridged oxygen
4
oxygen defects
4

Similar Publications

Premelted-Substrate-Promoted Selective Etching Strategy Realizing CVD Growth of High-Quality Graphene on Dielectric Substrates.

ACS Appl Mater Interfaces

January 2025

Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

Direct chemical vapor deposition growth of high-quality graphene on dielectric substrates is a great challenge. Graphene growth on dielectrics always suffers from the issues of a high nucleation density and poor quality. Herein, a premelted-substrate-promoted selective etching (PSE) strategy was proposed.

View Article and Find Full Text PDF

Direct pacing of the mid myocardium where re-entry originates can be used to prevent ventricular arrhythmias and circumvent the need for painful defibrillation or cardiac ablation. However, there are no pacing electrodes small enough to navigate the coronary veins that cross these culprit scar regions. To address this need, we have developed an injectable ionically conductive hydrogel electrode that can fill the epicardial coronary veins and transform them into flexible electrodes.

View Article and Find Full Text PDF

RADON in a high karst area of Montenegro - A case study.

Appl Radiat Isot

January 2025

School of Applied Mathematics and Informatics, University of Osijek, Trg Ljudevita Gaja 6, Osijek, Croatia.

The national radon surveys in Montenegro revealed that the highest annual average radon concentrations (C) in ground floors of dwellings and schools were found in a rural region characterized as a typical high-karst area. In this region, spanning approximately 800 km, C values in 9 houses and 16 schools ranged from 219 to 2494 Bq/m, with AM = 977 Bq/m. To investigate the causes of these elevated indoor radon concentrations, the following parameters were measured near the 25 surveyed buildings: soil humidity, electrical conductivity, pH, activity concentrations of Ra, U, U, Th and K, radon concentration in soil gas (c), soil permeability for radon gas (k), and gamma dose rate in the air.

View Article and Find Full Text PDF

Unraveling the conversion mechanism toward spinel sulfides as cathode materials for Mg-ion batteries.

Phys Chem Chem Phys

January 2025

National Engineering Research Centre for Mg Alloys, Chongqing University, Chongqing 400044, PR China.

Rechargeable Mg batteries are promising candidates for achieving considerable high-energy-density. Enhancing the energy density can be achieved by integrating metallic Mg anodes with conversion-type cathode materials, which are characterized by multi-electron transfer process and elevated specific capacities in contrast to intercalation-type materials. Despite these advantages, the conversion-type cathodes still have some challenges of substantial volume expansion, sluggish diffusion kinetics and intricate mesophase evolution during repeated electrochemical reactions.

View Article and Find Full Text PDF
Article Synopsis
  • All-solid-state lithium-ion batteries (ASSLBs) are poised to enhance the performance and safety of next-generation electronics, especially electric vehicles, by utilizing solid electrolytes with high ionic conductivity.
  • Researchers have substituted the B-site of LiLaTiO (LLTO) with Ga to create Ga-doped LLTO solid electrolytes, leading to structural improvements, enhanced ionic conductivity, and better electrochemical stability through a solid-state reaction method.
  • The results show that Ga-doped LLTO exhibits a significantly increased ionic conductivity of 4.15 × 10 S cm in LiLaTiGaO (with 3% Ga), making it a promising candidate for future ASSLB applications due to its stable operating voltage range.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!