Plasma polymerized (PP) methyl acrylate (MA) and vinyl acetate (VA) composite thin films were deposited onto glass substrate varying MA and VA monomer concentrations. Thickness of the composite polymers is observed to vary on the MA and VA monomer ratios, where MA is found more reactive. The FESEM images of the composite polymers show better surface morphology compared to those of the homopolymers. Appearance of broad absorption bands in the FTIR spectra of polymer indicates the structural changes compared to monomer during polymerization. Thermogravimetric analysis and differential scanning calorimetry indicate that composite films are thermally more stable (up to 617 K) compared to homopolymer thin films (563 K). The current density versus voltage (J-V) characteristics of PP(MA-VA) composite films (sandwiched between aluminum electrodes) with different MA and VA ratios showed that the J values of the composite films gradually increase with elevating VA monomer and also with temperature (298-373 K). On the other hand, this value increases with decreasing the thickness of the composite films, which complies with the other studies. The conduction of the thickness-dependent composite films showed Ohmic in nature in the lower voltage region (< 10 V) while the space charge-limited conduction is found to be dominated in the higher voltage region (> 10 V) operating over the entire range of temperature. The activation energy at room temperature was found to be ~ 0.019 eV in the Ohmic region and 0.260 eV in the non-Ohmic region.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10603103PMC
http://dx.doi.org/10.1038/s41598-023-44413-yDOI Listing

Publication Analysis

Top Keywords

composite films
20
thin films
12
composite
9
acetate composite
8
composite thin
8
films
8
thickness composite
8
composite polymers
8
direct current
4
current conduction
4

Similar Publications

In this study, composite films (BC/Ch/SA/EEMS) were fabricated using the casting method by incorporating bacterial cellulose (BC), chitosan (Ch), and sodium alginate (SA) with ethanolic Moringa seed extract (EEMS). HPLC analysis detected 16 polyphenolic compounds in EEMS, with Rutin (59.56 μg/mL) the most abundant, while GC-MS analysis identified 11-octadecenoic acid (88.

View Article and Find Full Text PDF

Seasonal dynamics can vastly influence the natural depletion of oil spilled into the ocean and the Arctic regions are characterized by large seasonal changes, especially in temperature and daylight. To determine the influences of seasonal variation on natural oil depletion processes like dissolution, photooxidation and biodegradation, we deployed thin films of three oils in natural seawater during the Arctic summer and winter in Svalbard, Norway. The extent of oil depletion varied with season and the type of the oil, however, considerable depletion of n-alkanes and polycyclic aromatic compounds were observed during both summer and winter.

View Article and Find Full Text PDF

The substitution of traditional packaging with bio-based edible films has emerged as a new research direction. The starch biopolymer films currently studied by researchers exhibit issues such as inadequate physical properties, barrier performance, mechanical strength, and biological activity. Consequently, a range of advanced techniques are employed to enhance the properties of biopolymer films.

View Article and Find Full Text PDF

Semiconductor devices often rely on high-purity materials and interfaces achieved through vapor- and vacuum-based fabrication methods, which can enable precise compositional control down to single atomic layers. Compared to groups IV and III-V semiconductors, hybrid perovskites (HPs) are an emergent class of semiconductor materials with remarkable solution processability and compositional variability that have facilitated rapid experimentation to achieve new properties and progress toward efficient devices, particularly for solar cells. Surprisingly, vapor deposition techniques for HPs are substantially less developed, despite the complementary benefits that have secured vapor methods as workhorse tools for semiconductor fabrication.

View Article and Find Full Text PDF

Stretchable, Patterned Carbon Nanotube Array Enhanced by TiCT/Graphene for Electromagnetic Interference Shielding.

Nanomaterials (Basel)

March 2025

State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.

Stretchability and flexibility are essential characteristics for high-performance electromagnetic interference (EMI) shielding materials in wearable and smart devices. However, achieving these mechanical properties while also maintaining high EMI shielding effectiveness (SE) for shielding materials remains a significant challenge. Here, a stretchable patterned carbon nanotube (CNT) array composite film, reinforced with two-dimensional (2D) nanomaterials (TiCT and graphene), is fabricated using a straightforward scraping method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!