Hepatitis C virus (HCV) infection can regulate the number and dynamics of mitochondria, and is associated with a prominent hepatic mitochondrial injury. Mitochondrial distress conveys oxidative damage which is implicated in liver disease progression. The present study was conducted to assess the change of mitochondrial DNA (mtDNA) copy number in patients with HCV-related chronic liver disease and the impact of direct-acting antiviral (DAA) therapy. Whole blood mtDNA copy number was measured using real-time quantitative polymerase chain reaction at baseline and 12 weeks after the end of therapy in 50 treatment-naïve HCV-infected patients who achieved sustained viral response (SVR) after DAA therapy and 20 healthy controls. Whole blood mtDNA copy number appeared significantly lower in HCV-infected patients before therapy compared to healthy subjects (P < 0.001). Post-treatment, there was significant increase of mtDNA copy number in HCV-infected patients at SVR12 compared to the pre-treatment values (P < 0.001), meanwhile it didn't differ significantly between HCV-infected patients after therapy and healthy subjects (P = 0.059). Whole blood mtDNA copy number correlated inversely to the serum bilirubin in HCV-infected patients (P = 0.013), however it didn't correlate significantly to the serum aminotransferases, viral load or fibrosis-4 score (P > 0.05). In conclusion, chronic HCV infection has been associated with a prominent mitochondrial injury which could mediate a progressive liver disease. The improved mtDNA content after DAA therapy highlights a possible potential of these drugs to alleviate mitochondrial damage in HCV-related liver disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10603142PMC
http://dx.doi.org/10.1038/s41598-023-44665-8DOI Listing

Publication Analysis

Top Keywords

copy number
16
liver disease
12
mtdna copy
12
mitochondrial dna
8
chronic liver
8
disease impact
8
impact direct-acting
8
direct-acting antiviral
8
daa therapy
8
blood mtdna
8

Similar Publications

Comparative analysis of regression algorithms for drug response prediction using GDSC dataset.

BMC Res Notes

January 2025

Department of Computer Engineering, Chungbuk National University, Chungdae-ro 1, Cheongju, 28644, Republic of Korea.

Background: Drug response prediction can infer the relationship between an individual's genetic profile and a drug, which can be used to determine the choice of treatment for an individual patient. Prediction of drug response is recently being performed using machine learning technology. However, high-throughput sequencing data produces thousands of features per patient.

View Article and Find Full Text PDF

Background: Acute myeloid leukemia (AML) is an aggressive hematological neoplasm. Little improvement in survival rates has been achieved over the past few decades. Necroptosis has relationship with certain types of malignancies outcomes.

View Article and Find Full Text PDF

Unlabelled: This study aimed to synthesize evidence from primary studies on the acceptability and effectiveness of mindfulness-based interventions (MBIs) for improving lifestyle behaviors and body mass index (BMI) in children with overweight or obesity. We conducted a meta-analysis or followed the Synthesis Without Meta-analysis (SWiM) guidelines to synthesize study findings. The analysis included both mindfulness-only interventions and comprehensive behavioral interventions incorporating mindfulness components.

View Article and Find Full Text PDF

With the increasing availability of high-quality genome assemblies, pangenome graphs emerged as a new paradigm in the genomics field for identifying, encoding, and presenting genomic variation at both population and species levels. However, it remains challenging to truly dissect and interpret pangenome graphs via biologically informative visualization. To facilitate better exploration and understanding of pangenome graphs towards novel biological insights, here we present a web-based interactive Visualization and interpretation framework for linear-Reference-projected Pangenome Graphs (VRPG).

View Article and Find Full Text PDF

Shallow genome-wide cell-free DNA (cfDNA) sequencing holds great promise for non-invasive cancer monitoring by providing reliable copy number alteration (CNA) and fragmentomic profiles. Single nucleotide variations (SNVs) are, however, much harder to identify with low sequencing depth due to sequencing errors. Here we present Nanopore Rolling Circle Amplification (RCA)-enhanced Consensus Sequencing (NanoRCS), which leverages RCA and consensus calling based on genome-wide long-read nanopore sequencing to enable simultaneous multimodal tumor fraction estimation through SNVs, CNAs, and fragmentomics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!