Influence mechanism of sludge bed position on microalgal-bacterial granular sludge process.

Sci Total Environ

Department of Water and Wastewater Engineering, School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China; Hubei Provincial Engineering Research Center of Urban Regeneration, Wuhan University of Science and Technology, Wuhan 430065, China. Electronic address:

Published: January 2024

Sludge bed position in the reactor is one of the key parameters for microalgal-bacterial granular sludge (MBGS) process, which lacks of study. To fill this gap, this study investigated the influence of sludge bed position on MBGS. The sludge bed located closer to the bottom of the bioreactor demonstrated the optimal pollutant removal performance due to a close synergistic effect between microalgae and bacteria, resulting in the high growth rate as well as agglomeration rate of MBGS. Specifically, organics and ammonia removals were closely related to the sludge bed position. For the bottom bed position, the removals of organic matter, ammonia, and phosphate were 75.1 %, 73.1 %, and 82.5 %, whereas for the top bed position, they were only 13.2 %, 9.6 %, and 68.9 %, respectively. Additionally, a significant correlation between the position of the sludge bed and the relative abundance of Rotifera (R = 0.931) and Chlorophyta (R = 0.733) was observed, while the microbial communities at the lower sludge bed positions underwent rapider succession. It can be inferred that that a sludge bed located closer to the bottom of the bioreactor ensures that the light source and substrate matrix are transmitted in the same direction, thereby resulting in a close synergistic effect between microalgae and bacteria for achieving the excellent performance of MBGS. These results can provide basis knowledge for engineering application of MBGS process.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.168118DOI Listing

Publication Analysis

Top Keywords

sludge bed
32
bed position
24
sludge
10
bed
10
microalgal-bacterial granular
8
granular sludge
8
mbgs process
8
bed located
8
located closer
8
closer bottom
8

Similar Publications

Proper waste management and sustainable energy production are crucial for human development. For this purpose, this study evaluates the impact of blending percentage on energy recovery potential and environmental benefits of co-combustion of wastewater sludge and Brazilian low-rank coal. The sludge and coal were characterised in terms of their potential as fuel and co-combustion tests were carried out in a pilot-scale bubbling fluidised bed focused on the influence of the percentage of sludge mixture on the behaviour of co-combustion with coal in terms of flue gas composition and fluidised bed temperature stability.

View Article and Find Full Text PDF

Urbanization growth has intensified the challenge of managing and treating increasing amounts of municipal solid waste (MSW). Landfills are commonly utilized for MSW disposal because of their low construction and operation costs. However, this practice produces huge volumes of landfill leachate, a highly polluting liquid rich in ammoniacal nitrogen (NH-N), organic compounds, and various heavy metals, making it difficult to treat in conventional municipal wastewater treatment plants (WWTPs).

View Article and Find Full Text PDF

Nitrogen contamination of water sources poses significant environmental and health risks. The sulfur-driven simultaneous nitrification and autotrophic denitrification (SNAD) process offers a cost-effective solution, as it operates in a single reactor, requires no organic carbon addition, and produces minimal sludge. However, this process remains underexplored, with microbial population dynamics, their interactions, and their implications for process efficiency not yet fully understood.

View Article and Find Full Text PDF

Moving bed biofilm reactors can purify urban domestic sewage through microbial biodegradation. High-throughput sequencing was used to study the response mechanism of the biofilm microbial community to temperature. The effluent quality of the reactor declined with the decrease in temperature.

View Article and Find Full Text PDF

Although the paper industry processes polymeric materials and discharges large amounts of wastewater, no research on microplastics in the wastewater from paper mills has been published to date. This study is the first to investigate this issue. The wastewater treatment plants of twelve representatively selected German paper mills were investigated using an analysis protocol based on µ-Raman spectroscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!