Fe-N-doped biochar is a promising material for advanced-oxidation heterogeneous catalysis, but its adsorption-catalytic performance is significantly affected by biomass feedstock compositions and thermal conversion conditions and is not yet conclusive. In this paper, four lignocellulosic biomasses (rice straw, bamboo, poplar wood, and corn stover) were selected as raw materials to prepare Fe-N-biochar as persulfate activators by hydrothermal-thermolysis composite. Their lignocellulosic fractions and elemental contents were detected, and a variety of thermal conversion conditions were investigated for the rice straw-based Fe-N-biochar with the best activation performance among them. It was found that the holocellulose and lignin contents of the biomass affected the catalytic activity of the prepared catalysts with correlation coefficients of 0.57 and -0.93, respectively. Increasing the pyrolysis temperature from 500 °C to 800 °C could increase the ratio of Fe/Fe and the relative amounts of CC, graphitized N, and oxidized N in the catalyst by 0.17 %, 7 %, 12 %, and 18 %, respectively. Extending the pyrolysis time from 0.5 to 2 h was able to increase the relative content of CC, graphitized N, and oxidized N by 0.18 %, 3 %, 9 %, and 4 %, respectively. The most catalytically active rice straw-derived Fe-NRBC was able to remove 91.7 % of sulfamethoxazole (SMX) and 93.07 % of TOC mainly via ·SO and ·OH in an adsorption-catalytic reaction of 60 min with a k of 0.047 min and the main active sites are FeN, Fe, pyridine N, oxidized N and CO. Finally, degradation intermediates and pathways were also characterized. This paper is expected to provide a basis for the future targeted regulation of Fe-N biochar for water pollution treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.168101DOI Listing

Publication Analysis

Top Keywords

thermal conversion
12
conversion conditions
12
graphitized oxidized
8
insights influence
4
influence mechanism
4
mechanism biomass
4
biomass substrate
4
substrate thermal
4
conditions fen
4
fen doped
4

Similar Publications

A Spiro-Based NIR-II Photosensitizer with Efficient ROS Generation and Thermal Conversion Performances for Imaging-Guided Tumor Theranostics.

Adv Healthc Mater

January 2025

Center for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing, 210023, China.

Organic photosensitizers (PSs) possessing NIR-II emission and photodynamic/photothermal effect have received a great sense of attention for their cutting-edge applications in imaging-guided multimodal phototherapy. However, it is highly challenging to design efficient PSs with high luminescence and phototherapy performance simultaneously. In this study, a spiro-functionalization strategy is proposed to alleviate aggregate-caused quenching of PSs and promote photodynamic therapy, and the strategy is verified via a spiro[fluorine-9,9'-xanthene]-modified NIR-II PS (named SFX-IC) with an acceptor-donor-acceptor configuration.

View Article and Find Full Text PDF

Polycalmagite Coating Enables Long-Term Alkaline Seawater Oxidation Over NiFe Layered Double Hydroxide.

Small

January 2025

College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China.

Renewable energy-powered seawater electrolysis is a green and attractive technique for producing high-purity hydrogen. However, severe chlorideions (Cl) and their derivatives tend to corrode anodic catalysts at ampere-level current densities and hinder the application of seawater-to-H systems. Herein, a polycalmagite (PCM)-coated NiFe layered double hydroxide is presented on Ni foam (NiFe LDH@PCM/NF) that exhibits exceptional stability in alkaline seawater.

View Article and Find Full Text PDF

Graft-to/Graft-From Synthesis of Janus Graft Copolymers for Bottlebrush Polymer Electrolytes.

Macromol Rapid Commun

January 2025

Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.

Janus graft copolymers, which combine the characteristics of block and graft copolymers, have been used in the fields of reaction catalysis, surface modification, and drug delivery, but their applications in lithium batteries have rarely been reported. Herein, Janus graft copolymers with polyethylene glycol (PEG) and polystyrene (PS) side chains are synthesized by combining reversible addition-fragmentation chain transfer (RAFT) polymerization and atom transfer radical polymerization (ATRP) methods and doped with lithium salts to fabricate Janus bottlebrush polymer electrolytes (PEG-J-PS). The PEG side chains of the brush polymers impart good ion-conducting properties to the electrolytes, while the PS side chains improve the mechanical strength and thermal and chemical stability of the electrolytes.

View Article and Find Full Text PDF

The development of efficient immobilization support for the enhancement of enzyme activity and recyclability is a highly desirable objective. Single-crystalline ordered macro-microporous ZIF-8 (SOM-ZIF-8), has emerged as a highly effective matrix for enzyme immobilization, however, the inherent hydrophobic nature limits its further advancement. Herein, we have customized the immobilization of the Pseudomonas cepacia lipase (LP) in the modification-channels of SOM-ZIF-8 by functionalizing the inner surface-properties with polyethylene glycol (PEG) (LP@SOM-ZIF-8-PEG), and significant enhancement of the activity and (thermal, solvent and cyclic) stability can be realized.

View Article and Find Full Text PDF

Hydrogen production from biomass pyrolysis is attractive since it allows for green hydrogen production through feedstock and thermal conversion. However, the key limiting factors for hydrogen production are the high oxygen content, uneven heating of biomass pellets during the slow heating process, and insufficient depolymerization due to low reaction temperatures (low gas yields and low hydrogen content). To address these challenges, fast pyrolysis of super Arundo in NaOH-NaCO molten salt was carried out in this paper at 450 °C, 550 °C and 650 °C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!