Background: In recent years, light has been used for bacterial control of periodontal diseases. This in vitro study evaluated the effects of light-emitting diode (LED) irradiation at different wavelengths on both Porphyromonas gingivalis and human gingival fibroblasts (HGF-1).

Methods: P. gingivalis suspension was irradiated with LEDs of 365, 405, 450, 470, 565, and 625 nm at 50, 100, 150, and 200 mW/cm for 3 min (radiant exposure: 9, 18, 27, 36 J/cm, respectively). Treated samples were anaerobically cultured on agar plates, and the number of colony-forming units (CFUs) was determined. Reactive oxygen species (ROS) levels were measured after LED irradiation. The viability and damage of HGF-1 were measured through WST-8 and lactate dehydrogenase assays, respectively. Gene expression in P. gingivalis was evaluated through quantitative polymerase chain reaction.

Results: The greatest reduction in P. gingivalis CFUs was observed on irradiation at 365 nm with 150 mW/cm for 3 min (27 J/cm), followed by 450 and 470 nm under the same conditions. While 365-nm irradiation significantly decreased the viability of HGF-1 cells, the cytotoxic effects of 450- and 470-nm irradiation were comparatively low and not significant. Further, 450-nm irradiation indicated increased ROS production and downregulated the genes related to gingipain and fimbriae. The 565- and 625-nm wavelength groups exhibited no antibacterial effects; rather, they significantly activated HGF-1 proliferation.

Conclusions: The 450- and 470-nm blue LEDs showed high antibacterial activity with low cytotoxicity to host cells, suggesting promising bacterial control in periodontal therapy. Additionally, blue LEDs may attenuate the pathogenesis of P. gingivalis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pdpdt.2023.103860DOI Listing

Publication Analysis

Top Keywords

effects light-emitting
8
light-emitting diode
8
gingival fibroblasts
8
vitro study
8
bacterial control
8
control periodontal
8
led irradiation
8
450- 470-nm
8
blue leds
8
irradiation
6

Similar Publications

Figure-eight macrocycles represent a fascinating class of π-conjugated units characterized by unique aesthetics and non-contact molecular crossing at the center. Despite progress in synthesis over the past century, research into inorganic, organic, and polymeric figure-eight materials remains in its infancy. Here we report the first examples of figure-eight covalent organic frameworks by condensing figure-eight knots to create extended porous figure-eight π architectures.

View Article and Find Full Text PDF

A STAND-ALONE TOOL FOR MOSQUITO EGG ENUMERATION.

J Am Mosq Control Assoc

January 2025

Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602.

Accurate enumeration of mosquito eggs is crucial for various entomologic studies, including investigations into mosquito fecundity, life history traits, and vector control strategies. Traditional manual counting methods are labor intensive and prone to human error, highlighting the need for automated systems. This study presents a stand-alone automated mosquito egg counting system using a Raspberry Pi computer, high-quality camera, light-emitting diode ring light source, and a Python script leveraging the Open Source Computer Vision library.

View Article and Find Full Text PDF

Introduction: The prevention of diabetic foot ulcer (DFU) involves the classification of risk, systemic care, regular examinations, foot care, therapeutic education and adjunct treatments. Photobiomodulation (PBM) has been successfully administered for the healing of DFU and its preventive effects have drawn the interest of researchers.

Methods And Analysis: The purpose of the study is to assess the effect of PBM for the prevention of DFU through a randomised, controlled, double-blind, clinical trial.

View Article and Find Full Text PDF

Advancing efficiency in deep-blue OLEDs: Exploring a machine learning-driven multiresonance TADF molecular design.

Sci Adv

January 2025

Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan.

The pursuit of boron-based organic compounds with multiresonance (MR)-induced thermally activated delayed fluorescence (TADF) is propelled by their potential as narrowband blue emitters for wide-gamut displays. Although boron-doped polycyclic aromatic hydrocarbons in MR compounds share common structural features, their molecular design traditionally involves iterative approaches with repeated attempts until success. To address this, we implemented machine learning algorithms to establish quantitative structure-property relationship models, predicting key optoelectronic characteristics, such as full width at half maximum (FWHM) and main peak wavelength, for deep-blue MR candidates.

View Article and Find Full Text PDF

N-heterocyclic carbene (NHC)-based phosphorescent iridium complexes have attracted extensive attention due to their good optical properties and high stability in recent years. However, currently reported NHC-based iridium complexes can easily achieve emission of blue, green, or even ultraviolet light, while emission of red or deep-red light is relatively rare. Here, we report a new family of NHC-based deep-red iridium complexes (Ir1, Ir2, Ir3, and Ir4) featuring three-charge (0, -1, -2) ligands.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!