This minireview focuses on recent advancements in organic molecular-to-supramolecular self-assembled room-temperature phosphorescent (RTP) materials and their prospective biomedical applications. RTP materials, having their unique capacity to emit long-lasting phosphorescence at ambient temperature, have piqued researchers' interest in various biological applications, including biosensing, bioimaging, drug delivery, and photodynamic therapy (PDT). These materials have several benefits, including high sensitivity, remarkable photostability, and low cytotoxicity. RTP materials' self-assembly into supramolecular structures improves their performance and broadens their uses. Researchers have built organic RTP systems with long-lasting phosphorescence by leveraging weak noncovalent interactions in aquatic conditions. These materials have demonstrated incredible promise as biosensors that enable sensitive analyte detection and as photosensitizers in PDT that target and sensitize specific cell types. The review also outlines future directions and challenges in developing and utilizing pure organic RTP materials for biological imaging purposes, providing valuable guidelines for their future design and application.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsabm.3c00677DOI Listing

Publication Analysis

Top Keywords

rtp materials
12
organic molecular-to-supramolecular
8
molecular-to-supramolecular self-assembled
8
self-assembled room-temperature
8
room-temperature phosphorescent
8
biomedical applications
8
long-lasting phosphorescence
8
organic rtp
8
materials
6
rtp
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!