Functionally similar to the tight junctions present in animal guts, plant roots have evolved a lignified Casparian strip as an extracellular diffusion barrier in the endodermis to seal the root apoplast and maintain nutrient homeostasis. How this diffusion barrier is structured has been partially defined, but its lignin polymerization and assembly steps remain elusive. Here, we characterize a family of dirigent proteins (DPs) essential for both the localized polymerization of lignin required for Casparian strip biogenesis in the cell wall and for attachment of the strip to the plasma membrane to seal the apoplast. We reveal a Casparian strip lignification mechanism that requires cooperation between DPs and the Schengen pathway. Furthermore, we demonstrate that DPs directly mediate lignin polymerization as part of this mechanism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.adi5032 | DOI Listing |
Appl Microbiol Biotechnol
January 2025
Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.
Lignin, the most abundant renewable source of aromatic compounds on earth, remains underexploited in traditional biorefining. Fraxetin, a naturally occurring flavonoid, has garnered considerable attention in the scientific community due to its diverse and potent biological activities such as antimicrobial, anticancer, antioxidant, anti-inflammatory, and neurological protective actions. To enhance the green and value-added utilization of lignin, Saccharomyces cerevisiae was engineered as a cell factory to transform lignin derivatives to produce fraxetin.
View Article and Find Full Text PDFGreen Chem
January 2025
Department of Materials and Environmental Chemistry, Stockholm University SE-106 91 Stockholm Sweden
Lignin has emerged as a sustainable alternative to fossil-based polymers in advanced materials such as photonics. However, current methods for preparing photonic lignin materials are limited by non-benign organic solvents and low production yields. In this work, we present a highly efficient process that enables the production of photonic glasses with yields ranging from 48% to 72%, depending on the size of the lignin nanoparticles obtained from herbaceous soda lignin, softwood kraft lignin, and hardwood organosolv lignin.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
January 2025
Graduate Program in Bioscience Technologies, Universidade Tecnológica Federal do Paraná, Toledo, Paraná, Brazil.
Efficient degradation of lignocellulosic biomass is key for the production of value-added products, contributing to sustainable and renewable solutions. This study employs a two-step approach to evaluate lignocellulolytic enzymes of Ceratocystis paradoxa, Colletotrichum falcatum, and Sporisorium scitamineum. First, an in silico genomic analysis was conducted to predict the potential enzyme groups produced by these fungi.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
The sustainable flame retardancy of polymeric materials is a key focus for the direction of the next generation in the field of fire safety. Bio-derived flame retardants are gaining attention as environmentally friendly additives due to their low ecological impact and decreasing costs. These compounds can enhance char formation in polymeric materials by swelling upon heating, attributed to their functional groups.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Laboratory of Physical Chemistry of Materials (LCPM), Campus Fanar, Faculty of Sciences II, Lebanese University, Fanar, Jdeidet P.O. Box 90656, Lebanon.
Increasing the flame retardancy of lignocellulosic materials such as × can effectively enable their wide use. This study examines the fireproofing process of Miscanthus particles using an eco-friendly process by grafting phytic acid and urea in aqueous solution. Miscanthus particles underwent a steam explosion step before being grafted.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!