AI Article Synopsis

  • Direct interactions between bacteriophages and mammalian hosts can create unexplored symbiotic relationships, although their effects on mammalian cells and immune responses are not well understood.
  • In vitro experiments with purified phage T4 showed that it was rapidly absorbed by mammalian cells without triggering inflammatory DNA response pathways, leading to cell metabolism increase and enhanced survival.
  • T4 phage application activated specific signaling pathways while inhibiting cell cycle progression, suggesting that mammalian cells may use bacteriophages to enhance growth and metabolic functions.

Article Abstract

There is a growing appreciation that the direct interaction between bacteriophages and the mammalian host can facilitate diverse and unexplored symbioses. Yet the impact these bacteriophages may have on mammalian cellular and immunological processes is poorly understood. Here, we applied highly purified phage T4, free from bacterial by-products and endotoxins to mammalian cells and analyzed the cellular responses using luciferase reporter and antibody microarray assays. Phage preparations were applied in vitro to either A549 lung epithelial cells, MDCK-I kidney cells, or primary mouse bone marrow derived macrophages with the phage-free supernatant serving as a comparative control. Highly purified T4 phages were rapidly internalized by mammalian cells and accumulated within macropinosomes but did not activate the inflammatory DNA response TLR9 or cGAS-STING pathways. Following 8 hours of incubation with T4 phage, whole cell lysates were analyzed via antibody microarray that detected expression and phosphorylation levels of human signaling proteins. T4 phage application led to the activation of AKT-dependent pathways, resulting in an increase in cell metabolism, survival, and actin reorganization, the last being critical for macropinocytosis and potentially regulating a positive feedback loop to drive further phage internalization. T4 phages additionally down-regulated CDK1 and its downstream effectors, leading to an inhibition of cell cycle progression and an increase in cellular growth through a prolonged G1 phase. These interactions demonstrate that highly purified T4 phages do not activate DNA-mediated inflammatory pathways but do trigger protein phosphorylation cascades that promote cellular growth and survival. We conclude that mammalian cells are internalizing bacteriophages as a resource to promote cellular growth and metabolism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10602308PMC
http://dx.doi.org/10.1371/journal.pbio.3002341DOI Listing

Publication Analysis

Top Keywords

mammalian cells
16
cellular growth
16
highly purified
12
bacteriophages resource
8
growth survival
8
bacteriophages mammalian
8
antibody microarray
8
purified phages
8
promote cellular
8
mammalian
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!