Recent advances in high-resolution connectomics provide researchers with access to accurate petascale reconstructions of neuronal circuits and brain networks for the first time. Neuroscientists are analyzing these networks to better understand information processing in the brain. In particular, scientists are interested in identifying specific small network motifs, i.e., repeating subgraphs of the larger brain network that are believed to be neuronal building blocks. Although such motifs are typically small (e.g., 2 - 6 neurons), the vast data sizes and intricate data complexity present significant challenges to the search and analysis process. To analyze these motifs, it is crucial to review instances of a motif in the brain network and then map the graph structure to detailed 3D reconstructions of the involved neurons and synapses. We present Vimo, an interactive visual approach to analyze neuronal motifs and motif chains in large brain networks. Experts can sketch network motifs intuitively in a visual interface and specify structural properties of the involved neurons and synapses to query large connectomics datasets. Motif instances (MIs) can be explored in high-resolution 3D renderings. To simplify the analysis of MIs, we designed a continuous focus&context metaphor inspired by visual abstractions. This allows users to transition from a highly-detailed rendering of the anatomical structure to views that emphasize the underlying motif structure and synaptic connectivity. Furthermore, Vimo supports the identification of motif chains where a motif is used repeatedly (e.g., 2 - 4 times) to form a larger network structure. We evaluate Vimo in a user study and an in-depth case study with seven domain experts on motifs in a large connectome of the fruit fly, including more than 21,000 neurons and 20 million synapses. We find that Vimo enables hypothesis generation and confirmation through fast analysis iterations and connectivity highlighting.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11045665 | PMC |
http://dx.doi.org/10.1109/TVCG.2023.3327388 | DOI Listing |
Elife
January 2025
Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, United States.
Sensory experience during developmental critical periods has lifelong consequences for circuit function and behavior, but the molecular and cellular mechanisms through which experience causes these changes are not well understood. The antennal lobe houses synapses between olfactory sensory neurons (OSNs) and downstream projection neurons (PNs) in stereotyped glomeruli. Many glomeruli exhibit structural plasticity in response to early-life odor exposure, indicating a general sensitivity of the fly olfactory circuitry to early sensory experience.
View Article and Find Full Text PDFElife
January 2025
Graduate School of Life Sciences, Tohoku University, Sendai, Japan.
Dopamine can play opposing physiological roles depending on the receptor subtype. In the fruit fly , and encode the D- and D-like receptors, respectively, and are reported to oppositely regulate intracellular cAMP levels. Here, we profiled the expression and subcellular localization of endogenous Dop1R1 and Dop2R in specific cell types in the mushroom body circuit.
View Article and Find Full Text PDFBMC Genomics
January 2025
Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
Background: Due to sexual dimorphism in growth of penaeid shrimp, all-female cultivation is desirable for the aquaculture industry. 17β-estradiol (E2) has the potential to induce the male-to-female sex reversal of decapod species. However, the mechanisms behind it remain poorly understood.
View Article and Find Full Text PDFSci Rep
January 2025
Key Laboratory for Stem Cells and Tissue Engineering Ministry of Education, Guangdong Provincial Key Laboratory of Brain Function and Disease, Institute of Spinal Cord Injury, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
Neuromuscular diseases usually manifest as abnormalities involving motor neurons, neuromuscular junctions, and skeletal muscle (SkM) in postnatal stage. Present in vitro models of neuromuscular interactions require a long time and lack neuroglia involvement. Our study aimed to construct rodent bioengineered spinal cord neural network-skeletal muscle (NN-SkM) assembloids to elucidate the interactions between spinal cord neural stem cells (SC-NSCs) and SkM cells and their biological effects on the development and maturation of postnatal spinal cord motor neural circuits.
View Article and Find Full Text PDFJ Neurosci
January 2025
Department of Neuroscience, Brown University, Providence RI, USA.
Voltage-gated potassium conductances [Formula: see text] play a critical role not only in normal neural function, but also in many neurological disorders and related therapeutic interventions. In particular, in an important animal model of epileptic seizures, 4-aminopyridine (4-AP) administration is thought to induce seizures by reducing [Formula: see text] in cortex and other brain areas. Interestingly, 4-AP has also been useful in the treatment of neurological disorders such as multiple sclerosis (MS) and spinal cord injury, where it is thought to improve action potential propagation in axonal fibers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!