The development of a self-calibrating ratio fluorescence probe without the need for additional substrates is a major advancement in biosensing. In this study, at room temperature, a self-calibrating infinite coordination polymer (SSA-Tb-ATP ICPs) has been proposed by self-assembling adenosine triphosphate (ATP) with 5-sulfosalicylic acid (SSA) and Tb. Due to the antenna effect, SSA-Tb-ATP ICPs exhibited strong green fluorescence emission of Tb (at 547 nm) and blue fluorescence emission of SSA (at 407 nm). This material offers several advantages over existing detection methods, including simplicity of synthesis and exceptional sensitivity. Our self-calibrating SSA-Tb-ATP ICPs demonstrated excellent performance in detecting alkaline phosphatase (ALP) and phosphate (Pi) in both serum and environmental samples with detection limits of 0.076 U/L and 0.025 μM, respectively. Moreover, we successfully employed the SSA-Tb-ATP ICPs to perform cellular imaging of ALP in both hepatocellular carcinoma cells (HepG2) and normal liver cells (LO2), representing a significant advancement in ALP detection and imaging. The simplicity of the synthesis and high sensitivity make this probe a promising tool for early diagnosis of hepatocellular carcinoma in clinical settings and environment analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c13393DOI Listing

Publication Analysis

Top Keywords

ssa-tb-atp icps
16
hepatocellular carcinoma
12
infinite coordination
8
coordination polymer
8
early diagnosis
8
diagnosis hepatocellular
8
fluorescence emission
8
simplicity synthesis
8
self-calibrating
4
self-calibrating lanthanide
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!