Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Spintronic terahertz (THz) emitters based on synthetic antiferromagnets (SAFs) of FM/Ru/FM (FM: ferromagnet) have shown great potential for achieving coherent superposition and significant THz power enhancement due to antiparallel magnetization alignment. However, key issues regarding the effects of interlayer exchange coupling and net magnetization on THz emissions remain unclear, which will inevitably hinder the performance improvement and practical application of THz devices. In this work, we have investigated the femtosecond laser-induced THz emission in Pt (3)/CoFe (3)/Ru ( = 0-3.5)/CoFe ( = 1.5-10)/Pt (3) (in units of nm) films with compensated and uncompensated magnetic moments. Antiferromagnetic (AF) coupling occurs in the Ru thickness ranges of 0.2-1.1 and 1.9-2.3 nm, with the first peak ( = 0.4 nm) of the AF coupling field () significantly higher than that of the second peak (2.0 nm). Rather high THz amplitude is found for the samples with strong AF coupling. Nevertheless, despite the same remanence ratio of zero, the THz amplitude for the symmetric SAF films declines significantly as the decreases from 0.8 to 0.4 nm, which is mainly ascribed to the noncolinear magnetization vectors due to the increased biquadratic coupling term. Specifically, we demonstrate that an asymmetric SAF structure with a dominant FM layer is more favored than the completely compensated one, which could generate significantly enhanced THz electric field with well-controlled polarity and intensity. In addition, as the temperature decreases, the THz emission intensity increases for the SAF samples of = 0.9 nm with negligible biquadratic coupling, which is contrary to the decreasing trend of the = 0.4 nm sample and has been attributed to the greatly enhanced .
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c11533 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!