Salmonella is a foodborne zoonotic bacterium, and the antimicrobial-resistant strains of Salmonella are a worldwide health concern. Herein, we employed a meta-analysis to determine the pooled prevalence of Salmonella and its antimicrobial resistance status in human, animal, and environmental isolates in South Asia. To this end, we followed the standard guideline of Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statements for searching literature in three databases namely PubMed, Google Scholar, and CAB abstracts, and a total of 100 eligible datasets were finally included which were published from January 2010 to June 2021. In the pooled prevalence of Salmonella in South Asia, the random model effect was 14.47% (95% CI: 10.17-20.19) with a high degree of heterogeneity (I, 99.8%) and overall antimicrobial resistance was 70% (95% CI: 63.0-76.0) with a heterogeneity of 23.6%. The temporal distribution of the overall antimicrobial resistance (%) against Salmonella was increased from 53 to 77% within 10 years. Out of 18 distinct Salmonella serotypes, S. enterica was highly prevalent (14.22%, 95% CI: 4.02-39.64) followed by S. pullorum (13.50%, 95% CI: 5.64-29.93) with antimicrobial resistance (%) were 86.26 and 90.06, respectively. Noteworthy, nalidixic acid (74.25%) and tetracycline (37.64%) were found mostly resistant to Salmonella whereas ceftriaxone (1.07%) and cefixime (1.24%) were sensitive. This systematic review demonstrated that overall antibiotic resistance profiles of Salmonella are increasing over time in South Asia. Thus, adequate hygienic practices, proper use of antimicrobials, and implementation of antibiotic stewardship are imperative for halting the Salmonella spread and its antimicrobial resistance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10686918 | PMC |
http://dx.doi.org/10.1007/s44197-023-00160-x | DOI Listing |
J Infect Dev Ctries
December 2024
Faculdade de Farmácia, Universidade Federal de Minas Gerais, Brazil.
Introduction: Antimicrobial resistance (AMR) is a major public health challenge globally. This study aimed to analyze the antibacterial consumption (ATBc), and the incidence of multidrug-resistant organisms (MDRO), focusing on pathogens Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. (ESKAPE group), in a Brazilian tertiary care hospital.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8 St, 02-786, Warsaw, Poland.
Streptococcus dysgalactiae (S. dysgalactiae ) is a common pathogen of humans and various animals. However, the phylogenetic position of animal S.
View Article and Find Full Text PDFNPJ Antimicrob Resist
January 2025
Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.
The genus Nocardia comprises over 130 species of soil-dwelling actinomycetes, many of which are opportunistic pathogens. Beyond their pathogenicity, Nocardia exhibits significant biosynthetic potential, producing an array of diverse antimicrobial secondary metabolites. This review highlights notable examples of these compounds and explores modern approaches to unlocking their untapped biosynthetic potential.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pre-clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Salaya, Thailand.
This study explores the effectiveness of various antifungal drugs in treating sporotrichosis caused by Sporothrix schenckii, especially in non-wild-type (non-WT) strains. The drugs tested include enilconazole (ENIL), isavuconazole (ISA), posaconazole (POS), terbinafine (TER), and itraconazole (ITC). The study involved in vitro and in vivo tests on 10 WT isolates and eight ITC non-WT isolates.
View Article and Find Full Text PDFNPJ Antimicrob Resist
January 2025
Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada.
Regulatory elements controlling gene expression fine-tune bacterial responses to environmental cues, including antimicrobials, to optimize survival. Acinetobacter baumannii, a pathogen notorious for antimicrobial resistance, relies on efficient efflux systems. Though the role of efflux systems in antibiotic expulsion are well recognized, the regulatory mechanisms controlling their expression remain understudied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!