Horseshoe crab Factor G is a heterodimeric serine protease zymogen that is activated by (1→3)-β-D-glucans (BDG) from fungal cell walls. This reaction is used in diagnostic agents for deep-seated mycosis. At present, functional analysis using Factor G from Tachypleus tridentatus has been performed, and genetic information has been published, but reconstitution using recombinant proteins has not yet been achieved. In this study, we cloned the genes for Factor G α and β from Limulus polyphemus; two gene sequences were obtained for Factor G α and seven for β. The obtained L. polyphemus Factor G α was used to specifically remove BDG from the culture medium for eliminating the activator BDG. The optimal combination for each sequence was examined with BDG removal medium, and a combination was found that featured BDG-dependent activity. These results indicate that a BDG assay system using recombinant Factor G is feasible in reconstitution. This research will support future reagent development that does not require natural horseshoe crab resources. KEY POINTS: • Cloned novel Factor G α subunit and β subunit genes from L. polyphemus • Proposed a method of removing BDG without reducing culture medium performance • Identified combination of recombinant α and β subunits for BDG-dependent activation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00253-023-12808-6 | DOI Listing |
Biotechnol Bioeng
January 2025
Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal.
The insect cell-baculovirus expression vector system (IC-BEVS) has been an asset to produce biologics for over 30 years. With the current trend in biotechnology shifting toward process intensification and integration, developing intensified processes such as continuous production is crucial to hold this platform as a suitable alternative to others. However, the implementation of continuous production has been hindered by the lytic nature of this expression system and the process-detrimental virus passage effect.
View Article and Find Full Text PDFMicrob Cell Fact
January 2025
MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China.
Background: Hyaluronic acid (HA) is extensively employed in various fields such as medicine, cosmetics, food, etc. The molecular weight (MW) of HA is crucial for its biological functions. Streptococcus zooepidemicus, a prominent HA industrial producer, naturally synthetizes HA with high MW.
View Article and Find Full Text PDFProbiotics Antimicrob Proteins
January 2025
State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, No. 20 Dongda Street, Beijing, 100071, Fengtai District, China.
Human β-defensin (HBD) has been recognized as a promising antimicrobial agent due to its broad-spectrum antimicrobial activity against various pathogens. In our previous work, we engineered a chimeric human β-defensin, designated H4, by fusing human β-defensin 3 and human β-defensin 4, resulting in enhanced antimicrobial activity and salt stability. However, the high cost of chemical synthesis due to the relatively large number of amino acids in H4 has limited its applications.
View Article and Find Full Text PDFJ Immunol Methods
January 2025
ICAR-Indian Veterinary Research Institute, Bangalore, Karnataka 560024, India.
Bluetongue (BT) is a vector-borne viral disease of multiple domestic and wild ruminants across the globe. The VP7 protein of bluetongue virus (BTV) is the major immune-dominant structural protein that is conserved across the BTV serotypes and therefore, targeted for the development of immuno-diagnostics for BT. In this study, full-length recombinant VP7 protein (rVP7) of BTV-1 was expressed in Trochoplusia ni derived insect cells (Tn5) using codon-optimized synthetic gene construct through baculovirus expression system.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Food and Nutrition, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agriculture University, Hefei, Anhui 230036, China. Electronic address:
Micelle systems using safe food-grade biopolymers are of particular interest for the encapsulation and delivery of nutrition components. Micellar casein (MC) was assembled using transglutaminase (TGase) to couple with phosphoserine peptide, which enhance the stability of docosahexaenoic acid (DHA) from algae oil. The mechanism behind the construction of MC-phosphoserine peptide and the encapsulation of DHA was explored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!