Studies on ultrafast and remarkable removal of phosphate from sewage water by metal-organic frameworks.

Environ Monit Assess

Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India.

Published: October 2023

In the proposed research, a lanthanum-doped metal-organic framework (La-ATP) has been synthesised to remove phosphate from contaminated aqueous solutions. La-ATP was synthesised by a green energy-saving route using microwave irradiation and exhibited a phenomenal sorption capacity of 290 mg/g for the removal of phosphate. At a minimal dose of 0.1 g/L, 25 mg/L of phosphate gets reduced to 6.3 mg/L within 5 min and reaches equilibrium in 25 min. The isoelectric point of La-ATP was found to be 8.99, and it is efficient in removing phosphate over a wide range of pH 5-10. The existence of commonly occurring competing anions like sulphate, fluoride, chloride, arsenate, bicarbonate, and nitrate does not affect the uptake capacity of La-ATP towards phosphate ions. Furthermore, the robustness of La-ATP is demonstrated by its applicability to remove phosphate from real-life sewage water by reducing 10 mg/L of phosphorus from sewage water to < 0.02 mg/L. The primary mechanism governing phosphate removal was found to be ionic interaction and ligand exchange. Therefore, La-ATP can be considered a viable candidate for the treatment of eutrophic water streams because of its high sorption capacity, super-fast kinetics, and adaptability to contaminated sewage.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10661-023-11962-8DOI Listing

Publication Analysis

Top Keywords

sewage water
12
phosphate
8
removal phosphate
8
la-atp synthesised
8
remove phosphate
8
sorption capacity
8
la-atp
6
studies ultrafast
4
ultrafast remarkable
4
remarkable removal
4

Similar Publications

Despite the vast amount of water on Earth, only a small percent is suitable for consumption, and these resources are diminishing. Moreover, water resources are unevenly distributed, leading to significant disparities in access to drinking water between countries and populations. Increasing consumption and the expanding human population necessitate the development of novel wastewater treatment technologies and the use of water treatment byproducts in other areas, such as fertilisers.

View Article and Find Full Text PDF

Poultry litter waste management poses a significant global challenge, attributed to its characteristics (odorous, organic, pathogenic, attracting flies). Conventional approaches to managing poultry litter involve composting, biogas generation, or direct field application. Recently, there has been a surge of interest in a novel technology that involves the bioconversion of organic waste utilizing insects (known as entomoremediation), particularly focusing on black soldier fly larvae (BSFL), and has demonstrated successful transformation of various organic waste materials into insect meal and frass (referred to as organic frasstilizer).

View Article and Find Full Text PDF

Microbial eukaryotes are vital to global microbial diversity, but there is limited information about their composition and sources in contaminated surface waters. This study examined the pathogens and potential sources of microbial eukaryotic communities in polluted sink environments using the 18S rDNA amplicon sequencing combined with the fast expectation-maximization for microbial source tracking (FEAST) program. Six sampling sites were selected along the Pasig-Marikina-San Juan (PAMARISAN) River System, representing different locations within the waterway and classified as sinks (n = 12), whereas animal fecal samples collected from various farms were classified as sources (n = 29).

View Article and Find Full Text PDF

The selection of suitable raw materials as adsorbents is a key factor in effectively removing phosphorus from water. As an industrial by-product, soda residue exhibits high porosity and surface area, which can effectively adsorb pollutants. Magnetic lanthanum-iron soda residue (La-Fe-CSR) was synthesized using the co-precipitation method, and its characterization and mechanism for removing phosphate were thoroughly investigated.

View Article and Find Full Text PDF

This review article provides a thorough examination of an interaction between linear alkylbenzenes (LABs) and ecosystems. The review covers various aspects of LABs' impact on ecosystems, focusing on detection and treatment strategies to mitigate ecological consequences. It delves into LABs' role as molecular markers for sewage pollution, their physicochemical properties contributing to persistence, and their effects on aquatic and terrestrial organisms, including disruptions to endocrine systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!