A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

High-Content Screening of Synaptic Density Modulators in Primary Neuronal Cultures. | LitMetric

High-Content Screening of Synaptic Density Modulators in Primary Neuronal Cultures.

Curr Protoc

Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France.

Published: October 2023

AI Article Synopsis

  • The synapse is critical for neuronal communication and is impacted early in neurodegenerative diseases, making it essential to study synapse loss.
  • A new high-content screening (HCS) model was developed to quantitatively analyze how gene silencing affects synaptic density using primary neuronal cultures from neonatal rat hippocampus.
  • The study details various protocols for culturing neurons, transducing lentiviral shRNAs, immunostaining, image acquisition, and analyzing synaptic density in a streamlined, automated 384-well plate format.

Article Abstract

The synapse, which represents the structural and functional basis of neuronal communication, is one of the first elements affected in several neurodegenerative diseases. To better understand the potential role of gene expression in synapse loss, we developed an original high-content screening (HCS) model capable of quantitatively assessing the impact of gene silencing on synaptic density. Our approach is based on a model of primary neuronal cultures (PNCs) from the neonatal rat hippocampus, whose mature synapses are visualized by the relative localization of the presynaptic protein Synaptophysin with the postsynaptic protein Homer1. The heterogeneity of PNCs and the small sizes of the synaptic structures pose technical challenges associated with the level of automation necessary for HCS studies. We overcame these technical challenges, automated the processes of image analysis and data analysis, and carried out tests under real-world conditions to demonstrate the robustness of the model developed. In this article, we describe the screening of a custom library of 198 shRNAs in PNCs in the 384-well plate format. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Culture of primary hippocampal rat neurons in 384-well plates Basic Protocol 2: Lentiviral shRNA transduction of primary neuronal culture in 384-well plates Basic Protocol 3: Immunostaining of the neuronal network and synaptic markers in 384-well plates Basic Protocol 4: Image acquisition using a high-throughput reader Basic Protocol 5: Image segmentation and analysis Basic Protocol 6: Synaptic density analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cpz1.904DOI Listing

Publication Analysis

Top Keywords

basic protocol
24
synaptic density
12
primary neuronal
12
384-well plates
12
plates basic
12
high-content screening
8
neuronal cultures
8
technical challenges
8
protocol image
8
basic
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!