Mastigonemes are thread-like structures adorning the flagella of protists. In Chlamydomonas reinhardtii, filamentous mastigonemes find their roots in the flagella's distal region, associated with the channel protein PKD2, implying their potential contribution to external signal sensing and flagellar motility control. Here, we present the single-particle cryo-electron microscopy structure of the mastigoneme at 3.4 Å. The filament unit, MST1, consists of nine immunoglobulin-like domains and six Sushi domains, trailed by an elastic polyproline-II helix. Our structure demonstrates that MST1 subunits are periodically assembled to form a centrosymmetric, non-polar filament. Intriguingly, numerous clustered disulfide bonds within a ladder-like spiral configuration underscore structural resilience. While defects in the mastigoneme structure did not noticeably affect general attributes of cell swimming, they did impact specific swimming properties, particularly under varied environmental conditions such as redox shifts and heightened viscosity. Our findings illuminate the potential role of mastigonemes in flagellar motility and suggest their involvement in diverse environmental responses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10602792 | PMC |
http://dx.doi.org/10.1083/jcb.202301066 | DOI Listing |
iScience
January 2025
Institute of Marine Sciences, Spanish National Research Council (CSIC), 08003 Barcelona, Spain.
Translational silence of spermatozoa has long been considered the norm in animals. However, studies in mammals have shown that the mitochondrial ribosomal machinery is selectively activated during capacitation in the female reproductive tract, while cytosolic ribosomes remain inactive. Here, using quantitative proteomics in a piscine model species, we show that proteins involved in mRNA processing and cytoplasmic translation are predominantly accumulated in immature spermatozoa within the extratesticular excurrent ducts, while those related to flagellar motility are enriched in ejaculated (mature) sperm.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China.
Rotation of the bacterial flagellum, the first identified biological rotary machine, is driven by its stator units. Knowledge gained about the function of stator units has increasingly led to studies of rotary complexes in different cellular pathways. Here, we report that a tetrameric PilZ family protein, FlgX, is a structural component underneath the stator units in the flagellar motor of .
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan.
Many bacteria swim in liquid or swarm on surface using the flagellum rotated by a motor driven by specific ion flow. The motor consists of the rotor and stator, and the stator converts the energy of ion flow to mechanical rotation. However, the ion pathway and the mechanism of stator rotation coupled with specific ion flow are still obscure.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Department of Microbiology, University of Georgia, Athens, Georgia, United States of America.
The Helicobacter pylori flagellar motor contains several accessory structures that are not found in the archetypal Escherichia coli and Salmonella enterica motors. H. pylori hp0838 encodes a previously uncharacterized lipoprotein and is in an operon with flgP, which encodes a motor accessory protein.
View Article and Find Full Text PDFMicrolife
January 2025
Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), D-97080 Würzburg, Germany.
Bacterial small proteins impact diverse physiological processes, however, technical challenges posed by small size hampered their systematic identification and biochemical characterization. In our quest to uncover small proteins relevant for pathogenicity, we previously identified YjiS, a 54 amino acid protein, which is strongly induced during this pathogen's intracellular infection stage. Here, we set out to further characterize the role of YjiS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!