Three-dimensional printing (3DP) is emerging as an innovative manufacturing technology for biomedical and pharmaceutical applications, since the US FDA approval of Spritam as a 3D-printed drug. In the present review, we have highlighted the potential benefits of 3DP technology in healthcare, such as the ability to create patient-specific medical devices and implants, as well as the possibility of on-demand production of drugs and personalized dosage forms. We have further discussed future research to optimize 3DP processes and materials for pharmaceutical and biomedical applications. Cohesively, we have put forward the current state of active patents and applications related to 3DP technology in the healthcare and pharmaceutical industries including hearing aids, prostheses, medical devices and drug-delivery systems.

Download full-text PDF

Source
http://dx.doi.org/10.4155/ppa-2023-0018DOI Listing

Publication Analysis

Top Keywords

pharmaceutical biomedical
8
biomedical applications
8
3dp technology
8
technology healthcare
8
patent-based review
4
review role
4
role three-dimensional printing
4
technology
4
three-dimensional printing technology
4
pharmaceutical
4

Similar Publications

Background: Several epidemiological studies and intervention trials have demonstrated that grapes and blueberries, which are rich in flavanols, can lower the risk of cardiovascular disease. However, the mechanisms of action of these compounds remain unclear due to their low bioavailability.

Objective: This study aimed to characterize the sensory properties, blood flow velocity, and oxidative stress of a polyphenol rich grape and blueberry extract (PEGB) containing approximately 16% flavanols (11% monomers and 4% dimers).

View Article and Find Full Text PDF

This study utilized a validated questionnaire that aimed to assess pharmacists' awareness and attitude towards drug repurposing for antimicrobial use. Despite the reasonable awareness, pharmacists reported unfavourable attitudes. Pharmacists with a B.

View Article and Find Full Text PDF

Preclinical evaluation of the potential PARP-imaging probe [carbonyl-C]DPQ.

EJNMMI Radiopharm Chem

January 2025

Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.

Background: Poly (ADP-ribose) polymerase (PARP) enzymes are crucial for the repair of DNA single-strand breaks and have become key therapeutic targets in homologous recombination-deficient cancers, including prostate cancer. To enable non-invasive monitoring of PARP-1 expression, several PARP-1-targeting positron emission tomography (PET) tracers have been developed. Here, we aimed to preclinically investigate [carbonyl-C]DPQ as an alternative PARP-1 PET tracer as it features a strongly distinct chemotype compared to the frontrunners [F]FluorThanatrace and [F]PARPi.

View Article and Find Full Text PDF

Therapeutic decision-making for older patients with human epidermal growth factor receptor 2 (HER2)-positive breast cancer highlights the importance of a comprehensive geriatric assessment (CGA). This assessment considers the functional status, comorbidities, and relevant conditions of the patient, and allows for an estimation of life expectancy, but it does not facilitate individualized treatment plans. There are also other challenges to consider related to the cardiac toxicity of the treatments and the under-representation of older patients in clinical trials.

View Article and Find Full Text PDF

Purpose: Fuchs endothelial corneal dystrophy (FECD) displays a higher incidence in females than in males, yet the underlying mechanism remains unclear. This study aimed to elucidate sex-dependent differential gene expressions in corneal endothelial cells (CECs) from healthy non-FECD individuals and from patients with FECD.

Methods: RNA-Seq data from CECs of non-FECD subjects (3 males, 4 females) and FECD subjects (5 males, 5 females) were analyzed to identify differentially expressed genes (DEGs) between the sexes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!